Skip to main content
Log in

Biomimetic synthesis and assembly of HgS nanocrystals via a protein inducing process

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In this contribution, we report a simple protein-directed biomimetic strategy for fabricating HgS nano-assemblies in pepsin and bovine hemoglobin (BHb) aqueous solutions. Powder X-ray diffraction, transmission electron microscopy (TEM) and high-resolution transmission microscopy were used to characterize the structure and morphology of the nanocrystals, and track the whole growth process of HgS nano-assemblies. The prepared cubic phase HgS nano-assemblies were uniform and monodispersed with homogeneous sizes of around 60 nm (pepsin) and 50 nm (BHb), respectively. Time-dependent TEM results showed that the final products were formed via multi-level assembly by a large number of smaller nanoparticles under the confinement of protein molecules. The interaction between proteins and Hg2+/HgS was assessed by Fourier transform infrared and circular dichroism spectroscopy. Pepsin and BHb molecules have multiple functional groups, such as O–H, C=O and N–H, which could coordinate with Hg2+ ions to induce nucleation and control the growth of HgS nanocrystals. The formation of HgS–protein nanoconjugates resulted in the change of the secondary structure of the protein molecules. In addition, the HgS nanocrystals assembly process is discussed to investigate the growth mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Gao, Y. Cui, R.M. Levenson, L.W.K. Chung, S. Nie, In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22(8), 969–976 (2004)

    Article  CAS  Google Scholar 

  2. A.M. Derfus, W.C.W. Chan, S.N. Bhatia, Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 4(1), 11–18 (2004)

    Article  CAS  Google Scholar 

  3. P.V. Kamat, Quantum dot solar cells. semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 112(48), 18737–18753 (2008)

    Article  CAS  Google Scholar 

  4. M. Muneer, M. Saquib, M. Qamar, D. Bahnemann, Photocatalyzed reaction of indole in an aqueous suspension of titanium dioxide. Res. Chem. Intermed. 36(2), 121–125 (2010)

    Article  CAS  Google Scholar 

  5. P.G.S. Abadi, M. Salavati-Niasari, F. Davar, Hydrothermal synthesis, characterization and optical properties of 3D flower like indium sulfide nanostructures. Superlattice. Microst. 53, 76–88 (2013)

    Article  Google Scholar 

  6. D.S. Wang, W. Zheng, C.H. Hao, Q. Peng, Y.D. Li, A synthetic method for transition-metal chalcogenide nanocrystals. Chem. Eur. J. 15(8), 1870–1875 (2009)

    Article  CAS  Google Scholar 

  7. A. Sobhani, M. Salavati-Niasari, M. Sobhani, Synthesis, characterization and optical properties of mercury sulfides and zinc sulfides using single-source precursor. Mat. Sci. Semicon. Proc. 16(2), 410–417 (2013)

    Article  CAS  Google Scholar 

  8. M.B. Dickerson, K.H. Sandhage, R.R. Naik, Protein- and peptide-directed synthesis of inorganic materials. Chem. Rev. 108(11), 4935–4978 (2008)

    Article  CAS  Google Scholar 

  9. B.D. Briggs, M.R. Knecht, Nanotechnology meets biology: peptide-based methods for the fabrication of functional materials. J. Phys. Chem. Lett. 3(3), 405–418 (2012)

    Article  CAS  Google Scholar 

  10. J. Aizenberg, Crystallization in patterns: a bio-inspired approach. Adv. Mater. 16(15), 1295–1302 (2004)

    Article  CAS  Google Scholar 

  11. Y. Guo, F. Wang, J. Zhang, L. Yang, X. Shi, Q. Fang, X. Ma, Biomimetic synthesis of calcium carbonate with different morphologies under the direction of different amino acids. Res. Chem. Intermed. 39(6), 2407–2415 (2013)

    Article  CAS  Google Scholar 

  12. V.V. Kumar, S. Nithya, A. Shyam, N.S. Subramanian, J.T. Anthuvan, S.P. Anthony, Natural amino acid based phenolic derivatives for synthesizing silver nanoparticles with tunable morphology and antibacterial studies. Bull. Korean Chem. Soc. 34(9), 2702–2706 (2013)

    Article  CAS  Google Scholar 

  13. A. Priyam, A. Chatterjee, S.K. Das, A. Saha, Synthesis and spectral studies of cysteine-capped CdS nanoparticles. Res. Chem. Intermed. 31(7–8), 691–702 (2005)

    Article  CAS  Google Scholar 

  14. L. Yang, R. Xing, Q. Shen, K. Jiang, F. Ye, J. Wang, Q. Ren, Fabrication of protein-conjugated silver sulfide nanorods in the bovine serum albumin solution. J. Phys. Chem. B 110(21), 10534–10539 (2006)

    Article  CAS  Google Scholar 

  15. G. Kaur, M. Iqbal, M.S. Bakshi, Biomineralization of fine selenium crystalline rods and amorphous spheres. J. Phys. Chem. C 113(31), 13670–13676 (2009)

    Article  CAS  Google Scholar 

  16. L. Rastogi, J. Arunachalam, Synthesis and characterization of bovine serum albumin-copper nanocomposites for antibacterial applications. Colloids Surf. B: Biointerfaces 108, 134–141 (2013)

    Article  CAS  Google Scholar 

  17. L. Turyanska, T.D. Bradshaw, M. Li, P. Bardelang, W.C. Drewe, M.W. Fay, S. Mann, A. Patane, N.R. Thomas, The differential effect of apoferritin-PbS nanocomposites on cell cycle progression in normal and cancerous cells. J. Mater. Chem. 22(2), 660–665 (2012)

    Article  CAS  Google Scholar 

  18. P. Huang, L. Bao, D. Yang, G. Gao, J. Lin, Z. Li, C. Zhang, D. Cui, Protein-directed solution-phase green synthesis of BSA-conjugated MxSey (M = Ag, Cd, Pb, Cu) nanomaterials. Chem. Asian J. 6(5), 1156–1162 (2011)

    Article  CAS  Google Scholar 

  19. D. Ghosh, S. Mondal, S. Ghosh, A. Saha, Protein conformation driven biomimetic synthesis of semiconductor nanoparticles. J. Mater. Chem. 22(2), 699–706 (2012)

    Article  CAS  Google Scholar 

  20. F. Patolsky, Y. Weizmann, O. Lioubashevski, I. Willner, Au-nanoparticle nanowires based on DNA and polylysine templates. Angew. Chem. Int. Edit. 41(13), 2323–2327 (2002)

    Article  CAS  Google Scholar 

  21. I. Willner, F. Patolsky, J. Wasserman, Photoelectrochemistry with controlled DNA-cross-linked CdS nanoparticle arrays. Angew. Chem. Int. Edit. 40(10), 1861–1864 (2001)

    Article  CAS  Google Scholar 

  22. Y. Wang, L.Q. Chen, Y.F. Li, X.J. Zhao, L. Peng, C.Z. Huang, A one-pot strategy for biomimetic synthesis and self-assembly of gold nanoparticles. Nanotechnology 21(30), 305601 (2010)

    Article  Google Scholar 

  23. Y.Y. Kim, D. Walsh, Metal sulfide nanoparticles synthesized via enzyme treatment of biopolymer stabilized nanosuspensions. Nanoscale 2(2), 240–247 (2010)

    Article  CAS  Google Scholar 

  24. Y. Kong, J. Chen, F. Gao, W. Li, X. Xu, O. Pandoli, H. Yang, J. Ji, D. Cui, A multifunctional ribonuclease-A-conjugated CdTe quantum dot cluster nanosystem for synchronous cancer imaging and therapy. Small 6(21), 2367–2373 (2010)

    Article  CAS  Google Scholar 

  25. Y. Wang, Z.Y. Tang, S.S. Tan, N.A. Kotov, Biological assembly of nanocircuit prototypes from protein-modified CdTe nanowires. Nano Lett. 5(2), 243–248 (2005)

    Article  CAS  Google Scholar 

  26. H.S. Mansur, J.C. Gonzalez, A.A.P. Mansur, Biomolecule-quantum dot systems for bioconjugation applications. Colloids Surf. B: Biointerfaces 84(2), 360–368 (2011)

    Article  CAS  Google Scholar 

  27. R.A. McMillan, J. Howard, N.J. Zaluzec, H.K. Kagawa, R. Mogul, Y.F. Li, C.D. Paavola, J.D. Trent, A self-assembling protein template for constrained synthesis and patterning of nanoparticle arrays. J. Am. Chem. Soc. 127(9), 2800–2801 (2005)

    Article  CAS  Google Scholar 

  28. H. Yang, W. Yao, L. Yang, X. Ma, H. Wang, F. Ye, K. Wong, The self-assembly of CaCO3 crystals in the presence of protein. J. Cryst. Growth 311(9), 2682–2688 (2009)

    Article  CAS  Google Scholar 

  29. F.X. Xiao, J.W. Miao, B. Liu, Layer-by-layer self-assembly of CdS quantum dots/grapheme nanosheets hybrid films for photoelectrochemical and photocatalytic applications. J. Am. Chem. Soc. 136(4), 1559–1569 (2014)

    Article  CAS  Google Scholar 

  30. J.S. Hu, L.L. Ren, Y.G. Guo, H.P. Liang, A.M. Cao, L.J. Wan, C.L. Bai, Mass production and high photocatalytic activity of ZnS nanoporous nanoparticles. Angew. Chem. Int. Edit. 44(8), 1269–1273 (2005)

    Article  CAS  Google Scholar 

  31. W. Wichiansee, M.N. Nordin, M. Green, R.J. Curry, Synthesis and optical characterization of infra-red emitting mercury sulfide (HgS) quantum dots. J. Mater. Chem. 21(20), 7331–7336 (2011)

    Article  CAS  Google Scholar 

  32. K.A. Higginson, M. Kuno, J. Bonevich, S.B. Qadri, M. Yousuf, H. Mattoussi, Synthesis and characterization of colloidal beta-HgS quantum dots. J. Phys. Chem. B 106(39), 9982–9985 (2002)

    Article  CAS  Google Scholar 

  33. X. Liu, R. Liu, Y. Tang, L. Zhang, X. Hou, Y. Lv, Antibody-biotemplated HgS nanoparticles: extremely sensitive labels for atomic fluorescence spectrometric immunoassay. Analyst 137(6), 1473–1480 (2012)

    Article  CAS  Google Scholar 

  34. N. Goswami, A. Giri, S. Kar, M.S. Bootharaju, R. John, P.L. Xavier, T. Pradeep, S.K. Pal, Protein-directed synthesis of NIR-emitting, tunable HgS quantum dots and their applications in metal-ion sensing. Small 8(20), 3175–3184 (2012)

    Article  CAS  Google Scholar 

  35. R.S. Patil, T.P. Gujar, C.D. Lokhande, R.S. Mane, S. Han, Photoelectrochemical studies of chemically deposited nanocrystalline p-type HgS thin films. Sol. Energy 81(5), 648–652 (2007)

    Article  CAS  Google Scholar 

  36. P.G. Sheikhiabadi, F. Davar, M. Salavati-Niasari, The single source preparation of rod-like mercury sulfide nanostructures via hydrothermal method. Inorg. Chim. Acta 376(1), 271–277 (2011)

    Article  CAS  Google Scholar 

  37. M. Bazarganipour, M. Sadri, F. Davar, M. Salavati-Niasari, Mercury selenide nanorods: synthesis and characterization via a simple hydrothermal method. Polyhedron 30(6), 1103–1107 (2011)

    Article  CAS  Google Scholar 

  38. F.S. Sangsefidi, N. Mir, M. Salavati-Niasari, Hydrothermal synthesis and characterization of HgTe nanoribbons from [Hg(Salen)] as mercury source. Mat. Sci. Semicon. Proc. 27, 500–506 (2014)

    Article  CAS  Google Scholar 

  39. S. Garabagiu, A spectroscopic study on the interaction between gold nanoparticles and hemoglobin. Mater. Res. Bull. 46(12), 2474–2477 (2011)

    Article  CAS  Google Scholar 

  40. H. Hinterwirth, W. Lindner, M. Lammerhofer, Bioconjugation of trypsin onto gold nanoparticles: effect of surface chemistry on bioactivity. Anal. Chim. Acta 733, 90–97 (2012)

    Article  CAS  Google Scholar 

  41. R.R. Zhu, W.R. Wang, X.Y. Sun, H. Liu, S.L. Wang, Enzyme activity inhibition and secondary structure disruption of nano-TiO2 on pepsin. Toxicol. In Vitro 24(6), 1639–1647 (2010)

    Article  CAS  Google Scholar 

  42. L. Yang, Q.M. Shen, J.G. Zhou, K. Jiang, Biomimetic synthesis of CdS nanocrystals in aqueous solution of pepsin. Mater. Chem. Phys. 98(1), 125–130 (2006)

    Article  CAS  Google Scholar 

  43. A.K. Keshari, P.K. Singh, V. Parashar, A.C. Pandey, Temperature induced size selective synthesis of hybrid CdS/pepsin nanocrystals and their photoluminescence investigation. J. Lumin. 130(2), 315–320 (2010)

    Article  CAS  Google Scholar 

  44. T. Chen, M. Shao, H. Xu, C. Wen, S.T. Lee, Control over the crystal phase, crystallinity, morphology of AgVO3 via protein inducing process. J. Colloid Interf. Sci. 366(1), 80–87 (2012)

    Article  CAS  Google Scholar 

  45. S. Zolghadri, A.A. Saboury, A. Golestani, A. Divsalar, S. Rezaei-Zarchi, A.A. Moosavi-Movahedi, Interaction between silver nanoparticle and bovine hemoglobin at different temperatures. J. Nanopart. Res. 11(7), 1751–1758 (2009)

    Article  CAS  Google Scholar 

  46. Y.Q. Wang, H.M. Zhang, R.H. Wang, Investigation of the interaction between colloidal TiO2 and bovine hemoglobin using spectral methods. Colloids Surf. B: Biointerfaces 65(2), 190–196 (2008)

    Article  CAS  Google Scholar 

  47. M. Jackson, P.I. Haris, D. Chapman, Fourier transform infrared spectroscopic studies of calcium-binding proteins. Biochemistry 30(40), 9681–9686 (1991)

    Article  CAS  Google Scholar 

  48. L. Yang, Q. Shen, J. Zhou, K. Jiang, Biomimetic synthesis of CdS nanocrystals in the pepsin solution. Mater. Lett. 59(23), 2889–2892 (2005)

    Article  CAS  Google Scholar 

  49. K.A. Oberg, J.M. Ruysschaert, E. Goormaghtigh, The optimization of protein secondary structure determination with infrared and circular dichroism spectra. Eur. J. Biochem. 271(14), 2937–2948 (2004)

    Article  CAS  Google Scholar 

  50. F. Scheirlinckx, R. Buchet, J.M. Ruysschaert, E. Goormaghtigh, Monitoring of secondary and tertiary structure changes in the gastric H+/K+-ATPase by infrared spectroscopy. Eur. J. Biochem. 268(13), 3644–3653 (2001)

    Article  CAS  Google Scholar 

  51. S.M. Kelly, N.C. Price, The use of circular dichroism in the investigation of protein structure and function. Curr. Protein Pept. Sci. 1(4), 349–384 (2000)

    Article  CAS  Google Scholar 

  52. P.B. Kandagal, S. Ashoka, J. Seetharamappa, S.M.T. Shaikh, Y. Jadegoud, O.B. Ijare, Study of the interaction of an anticancer drug with human and bovine serum albumin: spectroscopic approach. J. Pharm. Biomed. 41(2), 393–399 (2006)

    Article  CAS  Google Scholar 

  53. G.R. Yang, D.Z. Qin, L. Zhang, Controllable synthesis of protein-conjugated lead sulfide nanocubes by using bovine hemoglobin as a capping agent. J. Nanopart. Res. 16(6), 2438 (2014)

    Article  Google Scholar 

  54. T. Chakraborty, I. Chakraborty, S.P. Moulik, S. Ghosh, Physicochemical studies on pepsin-CTAB interaction: energetics and structural changes. J. Phys. Chem. B 111(10), 2736–2746 (2007)

    Article  CAS  Google Scholar 

  55. W. Zhao, R.J. Yang, Effect of high-intensity pulsed electric fields on the activity, conformation and self-aggregation of pepsin. Food Chem. 114(3), 777–781 (2009)

    Article  CAS  Google Scholar 

  56. R.J. Yang, S.Q. Li, Q.H. Zhang, Effects of pulsed electric fields on the activity and structure of pepsin. J. Arg. Food Chem. 52(24), 7400–7406 (2004)

    Article  CAS  Google Scholar 

  57. M.J. Meziani, H.W. Rollins, L.F. Allard, Y.P. Sun, Protein-protected nanoparticles from rapid expansion of supercritical solution into aqueous solution. J. Phys. Chem. B 106(43), 11178–11182 (2002)

    Article  CAS  Google Scholar 

  58. M.J. Meziani, Y.P. Sun, Protein-conjugated nanoparticles from rapid expansion of supercritical fluid solution into aqueous solution. J. Am. Chem. Soc. 125(26), 8015–8018 (2003)

    Article  CAS  Google Scholar 

  59. Q.Y. Lu, F. Gao, S. Komarneni, Multi-level assemblies of lead sulphide nanorods. Nanotechnology 17(10), 2574–2580 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Nature Science Foundation of the Education Department of Henan Province (13B150182) and the Key Nature Science Foundation of Pingdingshan University (PDSU-QNJJ-2013003). We also thank the referees for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dezhi Qin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Du, X., Yang, G. et al. Biomimetic synthesis and assembly of HgS nanocrystals via a protein inducing process. Res Chem Intermed 41, 9067–9083 (2015). https://doi.org/10.1007/s11164-015-1947-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-1947-z

Keywords

Navigation