Skip to main content

Advertisement

Log in

Efficient production of 5-hydroxymethylfurfural through the dehydration of sugars with caprolactam hydrogen sulfate ([CPL]HSO4) ionic liquid catalyst in a water/proprylene glycol monomethyl ether mixed solvent

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Efficient production of 5-hydroxymethylfurfural (HMF) through the dehydration of sugars was achieved by developing a new catalyst caprolactam hydrogen sulfate ([CPL]HSO4) ionic liquid or using metal halide as the co-catalyst in a new water/proprylene glycol monomethyl ether solvent system. With an optimum synthesis condition, the yield of HMF derived from fructose dehydration at 105 °C for 90 min is as high as 80.5 % in the presence of [CPL]HSO4. The nature behind the attractive results was revealed by proposing the catalysis mechanism of the fructose dehydration. The yield of HMF is about 70 % using [CPL]HSO4 as the catalyst for fructose dehydration after being reused five times. The catalyst system [CPL]HSO4/metal halide was used for the dehydration of sucrose, and the optimum yield is as high as 64–68 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.A. Rosatella, S.P. Simeonov, R.F.M. Frade, C.M. Afonso, Green Chem. 13, 754 (2011)

    Article  CAS  Google Scholar 

  2. G. Tian, X. Tong, Y. Wang, Y. Yan, S. Xue, Res. Chem. Intermed. 39, 3255 (2013)

    Article  CAS  Google Scholar 

  3. C. Triebl, V. Nikolakis, M. Ierapetritou, Comput. Chem. Eng. 52, 26 (2013)

    Article  CAS  Google Scholar 

  4. F.K. Kazi, A.D. Patel, J.C. Serrano-Ruiz, J.A. Dumesic, R.P. Anex, Chem. Eng. J. 169, 329 (2011)

    Article  CAS  Google Scholar 

  5. D.B. Bevilaqua, M.K.D. Rambo, T.M. Rizzetti, A.L. Cardoso, A.F. Martins, J. Clean. Prod. 47, 96 (2013)

    Article  CAS  Google Scholar 

  6. B. Karimi, H.M. Mirzaei, RSC Adv. 3, 20655 (2013)

    Article  CAS  Google Scholar 

  7. A. Corma, S. Iborra, A. Velty, T. Ståhlberg, M.G. Sørensen, A. Riisager, Chem. Rev. 107, 2411 (2007)

    Article  CAS  Google Scholar 

  8. C. Moreau, A. Finiels, L.J. Vanoye, Mol. Catal. A 253, 165 (2006)

    Article  CAS  Google Scholar 

  9. B. Liu, Z.H. Zhang, Z.B.K. Zhao, Chem. Eng. J. 215–216, 517 (2013)

    Article  Google Scholar 

  10. S.H. Xiao, B. Liu, Y.M. Wang, Z.F. Fang, Z.H. Zhang, Bioresour. Technol. 151, 361 (2014)

    Article  CAS  Google Scholar 

  11. Z.F. Fang, B. Liu, J.J. Luo, Y.S. Ren, Z.H. Zhang, Biomass Bioenerg. 60, 171 (2014)

    Article  CAS  Google Scholar 

  12. Z. Hu, B. Liu, Z.H. Zhang, L.Q. Chen, Ind. Crops Prod. 50, 264 (2013)

    Article  CAS  Google Scholar 

  13. M.E. Zakrzewska, E. Bogl-Łukasik, R. Bogel-Łukasik, Chem. Rev. 111, 397 (2011)

    Article  CAS  Google Scholar 

  14. J. Yang, Q. Zhang, L. Zhu, S. Zhang, J. Li, X. Zhang, Y. Deng, Chem. Mater. 19, 2544 (2007)

    Article  CAS  Google Scholar 

  15. Z. Du, Z. Li, S. Guo, J. Zhang, L. Zhu, Y. Deng, J. Phys. Chem. B 109, 19542 (2005)

    Article  CAS  Google Scholar 

  16. S. Guo, Z. Du, S. Zhang, D. Li, Z. Li, Y. Deng, Green Chem. 8, 296 (2006)

    Article  CAS  Google Scholar 

  17. B.M. Kabyemela, T. Adschiri, R.M. Malaluan, K. Arai, Ind. Eng. Chem. Res. 38, 2888 (1999)

    Article  CAS  Google Scholar 

  18. X. Tong, Y. Ma, Y. Li, Appl. Catal. A 385, 1 (2010)

    Article  CAS  Google Scholar 

  19. B.F.M. Kuster, Starch 42, 314 (1990)

    Article  CAS  Google Scholar 

  20. D. Stošsić, S. Bennici, V. Rakić, A. Auroux, Catal. Today 192, 160 (2012)

    Article  Google Scholar 

  21. X.H. Qi, M. Watanabe, T.M. Aida, R.L. Smith Jr., Catal. Commun. 10, 1771 (2009)

    Article  CAS  Google Scholar 

  22. F. Tao, H. Song, L. Chou, RSC Adv. 1, 672 (2011)

    Article  CAS  Google Scholar 

  23. N. Jiang, R. Huang, W. Qi, R. Su, Z. He, Bioenerg. Res. 5, 380 (2012)

    Article  CAS  Google Scholar 

  24. T. Okano, K. Qiao, Q. Bao, D. Tomida, H. Hagiwara, C. Yokoyama, Appl. Catal. A 451, 1 (2013)

    Article  CAS  Google Scholar 

  25. Z.-D. Ding, J.-C. Shi, J–.J. Xiao, W.-X. Gu, C.-G. Zheng, H.-J. Wang, Carbohydr. Polym. 90, 792 (2012)

    Article  CAS  Google Scholar 

  26. G. Yong, Y.G. Zhang, J.Y. Ying, Angew. Chem. 120, 9485 (2008)

    Article  Google Scholar 

  27. Z. Zhang, B. Liu, Z. Zhao, Carbohyd. Polym. 88, 891 (2012)

    Article  CAS  Google Scholar 

  28. J.B. Binder, R.T. Raines, J. Am. Chem. Soc. 131, 1979 (2009)

    Article  CAS  Google Scholar 

  29. T. Stahlberg, M.G. Sorensen, A. Riisager, Green Chem. 12, 321 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and Suzhou Applied Basic Research Program (SYG201141) for financially supporting this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aijuan Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, P., Gu, A. & Wang, J. Efficient production of 5-hydroxymethylfurfural through the dehydration of sugars with caprolactam hydrogen sulfate ([CPL]HSO4) ionic liquid catalyst in a water/proprylene glycol monomethyl ether mixed solvent. Res Chem Intermed 41, 5311–5321 (2015). https://doi.org/10.1007/s11164-014-1633-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-014-1633-6

Keywords

Navigation