Skip to main content
Log in

Kinetic and thermodynamic studies of adsorption of Cd2+ by superparamagnetic nano iron oxide-loaded poly(acrylonitrile-co-acrylic acid) hydrogel

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The efficiency of adsorption of cadmium ions from aqueous solutions by superparamagnetic nano iron oxide-loaded poly(acrylonitrile-co-acrylic acid) hydrogel has been investigated. The effect of equilibration time, amount of adsorbent, temperature, adsorbate concentration, and pH was studied by use of a batch system. The copolymer was magnetized in situ and the size, phase identification, morphology, and coating of magnetic nanoparticles were characterized by TEM, AFM, XRD, and FTIR analysis respectively. The sorption data were analyzed and fitted to linearized equations of the Langmuir, Freundlich, and Temkin isotherms. The kinetics of sorption were analyzed by use of pseudo-first-order and pseudo-second-order kinetic models. Kinetic data, rate constants, equilibrium sorption capacities, and related correlation coefficients for each kinetic model were calculated and are discussed. Thermodynamic data ΔG°, ΔH°, and ΔS° were evaluated. It was found the sorption process was feasible, spontaneous, and exothermic in nature. This hydrogel was an efficient adsorbent for removal of Cd2+ ions from water (>98 % removal) and could be regenerated efficiently (>99 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M. Torab-Mostaedi, H. Ghassabzadeh, M. Ghannadi-Maragheh, Brazilian J. Chem. Eng. 27, 299–308 (2010)

    Article  CAS  Google Scholar 

  2. S. Ong, C. Seng, P. Lim, Electron. J. Environ. Agric. Food Chem. 6, 1764–1774 (2007)

    CAS  Google Scholar 

  3. A.J. Marais Barros, S. Prasad, V. Duarte Leite, A. Gouveia Souza, Brazilian J. Chem. Eng. 23, 153–162 (2006)

    Google Scholar 

  4. E.A. Silva, E.S. Cossich, C.G. Tavares, L. Cardozo Filho, R. Guirardello, Brazilian J. Chem. Eng. 20, 213–227 (2003)

    CAS  Google Scholar 

  5. G.A. Drush, Sci. Total Environ. 67, 75–89 (1993)

    Google Scholar 

  6. O. Yavuz, R. Guzel, F. Aydin, I. Tegin, R. Ziyadanogullari, Polish J. Environ. Stud. 16, 467–471 (2007)

    CAS  Google Scholar 

  7. L. Charerntanyarak, Water Sci. Technol. 39, 135–138 (1999)

    Article  CAS  Google Scholar 

  8. N. Saffaj, H. Loukil, S.A. Younssi, A. Albizane, M. Bouhria, M. Persin, A. Larbot, Desalination 168, 301–306 (2004)

    Article  CAS  Google Scholar 

  9. H.A. Qdias, H. Moussa, Desalination 164, 105–110 (2004)

    Article  Google Scholar 

  10. E. Alvarez-Ayuso, A. Garcia-Sanchez, X. Querol, Water Res. 37, 4855–4862 (2003)

    Article  CAS  Google Scholar 

  11. G.H. Chen, Sep. Purif. Technol. 38, 11–41 (2004)

    Article  Google Scholar 

  12. C. Gabaldon, P. Marzal, A. Seco, J. Chem. Tech. Biotechnol. 66, 279–285 (1996)

    Article  Google Scholar 

  13. G.C. Panda, S.K. Das, S. Chatterjee, P.B. Maity, T.S. Bandopadhyay, A.K. Guha, Biointerfaces 50, 149–154 (2006)

    Article  Google Scholar 

  14. N. Unlu, M. Ersoz, J. Hazard. Mater. 136, 272–280 (2006)

    Article  Google Scholar 

  15. R. Naseem, S.S. Tahir, Water Res. 35, 3982–3986 (2001)

    Article  CAS  Google Scholar 

  16. E.G. Pradasp, M.V. Sanchez, F.C. Cruz, V.M. Socias, P.M. Fernandez, J. Chem. Technol. Biotechnol. 59, 289–295 (1994)

    Article  Google Scholar 

  17. M.J. Angove, B.B. Johnson, J.D. Wells, Colloids Surface A 126, 137–147 (1997)

    Article  CAS  Google Scholar 

  18. O. Yavuz, H. Aslan, Fresenius Environ. Bull. 11, 194–197 (2002)

    CAS  Google Scholar 

  19. O. Yavuz, Y. Altunkaynak, F. Guzel, Water Res. 37, 948–952 (2003)

    Article  CAS  Google Scholar 

  20. C.A. Christophi, L. Axe, J. Environ. Eng. ASCE 126, 66–74 (2000)

    Article  CAS  Google Scholar 

  21. S. Mandiny, A.I. Zouboulis, K.A. Matis, Sep. Sci. Technol. 30, 2963–2978 (1995)

    Article  Google Scholar 

  22. M.B. Mcbridge, Soil Sci. Soc. Am. J. 44, 26–28 (1980)

    Article  Google Scholar 

  23. S. Kozar, H. Bilinski, M. Branica, Marine Chem. 40, 215–230 (1912)

    Article  Google Scholar 

  24. A. Garcia-Sanchez, E. Alvarez-Ayuso, Miner. Eng. 15, 539–547 (2000)

    Article  Google Scholar 

  25. J.A. Davis, C.C. Fuller, A.D. Cook, Geochim. Cosmochim. Acta 51, 1477–1490 (1887)

    Article  Google Scholar 

  26. J.M. Zachara, C.E. Cowan, C.T. Resch, Geochim. Cosmochim. Acta 55, 1549–1562 (1991)

    Article  CAS  Google Scholar 

  27. N. Cavallaro, M.B. Mcbride, Soil Sci. Soc. Am. J. 42, 550–556 (1978)

    Article  CAS  Google Scholar 

  28. C.C. Fuller, J.A. Davis, Geochim. Cosmochim. Acta 51, 1491–1502 (1987)

    Article  CAS  Google Scholar 

  29. S.M. Lee, A.P. Davis, Water Res. 35, 534–540 (2001)

    Article  CAS  Google Scholar 

  30. B. Ziyadanogullari, Fresenius Environ. Bull. 7, 472–476 (1998)

    CAS  Google Scholar 

  31. K.S. Asit, K.D. Arnab, Water Res. 21, 885–888 (1987)

    Article  Google Scholar 

  32. S.E. Bailey, T.J. Olin, R.M. Bricka, D.D. Adrian, Water Res. 33, 2469–2479 (1999)

    Article  CAS  Google Scholar 

  33. A.K. Gupta, S. Wells, IEEE Trans. Nanobiosci. 3, 66–69 (2004)

    Article  Google Scholar 

  34. P.W. Atkins, Physical Chemistry, 5th edn. (Oxford University Press, Oxford, 1995), p. 295

    Google Scholar 

  35. K.K. Pant, T.S. Singh, Sep. Purif. Technol. 36, 139–147 (2004)

    Article  Google Scholar 

  36. M. Horsfall, A.I. Spiff, A.A. Abia, Bull. Korean Chem. Sci. 25, 969–976 (2004)

    Article  CAS  Google Scholar 

  37. N.T. Abdel Ghani, G.A. Elchaghaby, Int. J. Environ. Sci. Technol. 4, 451–456 (2007)

    Article  CAS  Google Scholar 

  38. S.K. Bajpai, M.K. Armo, M. Namdeo, Acta Chim. Slov. 56, 254–261 (2009)

    CAS  Google Scholar 

  39. C. Namasivayam, K. Ranganathan, Water Res. 29, 1737–1744 (1995)

    Article  CAS  Google Scholar 

  40. M. Ajmallet, R.A. Rao, S. Anwar, J. Ahmad, R. Ahmad, Bioresour. Technol. 86, 147–149 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express thanks to the Department of Atomic Energy, BRNS-BARC, Mumbai, India for providing financial assistance. The authors are also grateful to UGC-DAE Consortium for Scientific Research, Indore, India for FTIR, XRD, and AFM analysis and AIIMS, New Delhi, India, for TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alka Tiwari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiwari, A., Sharma, N. Kinetic and thermodynamic studies of adsorption of Cd2+ by superparamagnetic nano iron oxide-loaded poly(acrylonitrile-co-acrylic acid) hydrogel. Res Chem Intermed 41, 2043–2062 (2015). https://doi.org/10.1007/s11164-013-1330-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-013-1330-x

Keywords

Navigation