Skip to main content

Advertisement

Log in

Putting all the pieces together: integrating current knowledge of the biology, ecology, fisheries status, stock structure and management of yellowfin tuna (Thunnus albacares)

Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Abstract

Yellowfin tuna (Thunnus albacares; YFT) is an apex marine predator inhabiting tropical and sub-tropical pelagic waters. It supports the second largest tuna fishery in the world. Here, we review the available literature on YFT to provide a detailed overview of the current knowledge of its biology, ecology, fisheries status, stock structure and management, at global scale. YFT are characterized by several peculiar anatomical and physiological traits that allow them to survive in the oligotrophic waters of the pelagic realm. They are opportunistic feeders, which allows fast growth and high reproductive outputs. Globally, YFT fisheries have expanded over the last century, progressively moving from coastal areas into the majority of sub-tropical and tropical waters. This expansion has led to a rapid increase in global commercial landings, which are predominantly harvested by industrial longline and purse seine fleets. For management purposes, YFT is divided into four stocks, each of which is currently managed by a separate tuna Regional Fisheries Management Organization. Our current understanding of YFT stock structure is, however, still uncertain, with conflicting evidence arising from genetic and tagging studies. There is, moreover, little information about their complex life-history traits or the interactions of YFT populations with spatio-temporally variable oceanographic conditions currently considered in stock assessments. What information is available, is often conflicting at the global scale. Finally, we suggest future research directions to manage this valuable resource with more biological realism and more sustainable procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Source: Web of Science and Science Direct

Similar content being viewed by others

References

  • Adam SM (2004) Country review–Maldives. Review of the State World Marine Capture Fisheries Management: Indian Ocean. FAO fisheries technical paper

    Google Scholar 

  • Aguila RD, Perez SKL, Catacutan BJN, Lopez GV, Barut NC, Santos MD (2015) Distinct yellowfin tuna (Thunnus albacares) stocks detected in Western and Central Pacific Ocean (WCPO) using DN microsatellites. PLoS ONE 10(9):e0138292. doi:10.1371/journal.pone.0138292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Albaret JJ (1976) La reproduction de l’albacore, Thunnus albacares, dans le Golfe de Guinée. Cah. ORSTOM (Sér. Océanogr.) 15:389–419

  • Aleyev YG (1977) Nekton. Dr W. Junk, The Hague, 435 pp

  • Allendorf FW, Phelps SR (1981) Use of allelic frequencies to describe population structure. Can J Fish Aquat Sci 38:1507–1514

    Article  Google Scholar 

  • Altringham JD, Block BA (1997) Why do tuna maintain elevated slow muscle temperatures? Power output of muscle isolated from endothermic and ectothermic fish. J Exp Biol 200:2617–2627

    CAS  PubMed  Google Scholar 

  • Alvarado Bremer JRA, Mejuto J, Greig TW, Ely B (1996) Global population structure of the swordfish (Xiphias gladius L.) as revealed by analysis of the mitochondrial DNA control region. J Exp Mar Biol Ecol 197:295–310

    Article  Google Scholar 

  • Alvarado Bremer JA, Stéquert B, Robertson NW, Ely B (1998) Genetic evidence for inter-oceanic subdivision of bigeye tuna (Thunnus obesus) populations. Mar Biol 132:547–557

    Article  Google Scholar 

  • Antoni L, Luque PL, Naghshpour K, Saillant EA (2014) Polymorphic microsatellite markers for the Yellowfin tuna (Thunnus albacares). Conserv Genet Resour 6:609–611. doi:10.1007/s12686-014-0152-5

    Article  Google Scholar 

  • Appleyard S, Grewe P, Innes B, Ward R (2001) Population structure of yellowfin tuna (Thunnus albacares) in the western Pacific Ocean, inferred from microsatellite loci. Mar Biol 139:383–393. doi:10.1007/s002270100578

    Article  CAS  Google Scholar 

  • Aranda M, Murua H, de Bruyn P (2012) Managing fishing capacity in tuna regional fisheries management organisations (RFMOs): development and state of the art. Mar Policy 36:985–992

    Article  Google Scholar 

  • Arocha F, Lee DW, Marcano LA, Marcano JS (2001) Update information on the spawning of yellowfin tuna, Thunnus albacares, in the western central Atlantic. Col Vol Sci Pap ICCAT 52:167–176

    Google Scholar 

  • Bard FX (1984) Croissance de l’albacore (Thunnus albacares) atlantique, d’apres les donnees desmarquages. ICCAT Coll Vol Sci Pap 20:104–116

    Google Scholar 

  • Bard FX, Hervé A (1994) Structure du stock de l’albacore (Thunnus albacares) atlantique d’après les marquages comparés aux lieux de ponte. Inter Comm Cons Atlan Tunas Collect Vol Sci Pap ICCAT 42:204–208

    Google Scholar 

  • Bernal D, Dickson KA, Shadwick RE, Graham JB (2001) Review: analysis of the evolutionary convergence for high performance swimming in lamnid sharks and tunas. Comp Biochem Physiol A Mol Integr Physiol 129:695–726. doi:10.1016/S1095-6433(01)00333-6

    Article  CAS  PubMed  Google Scholar 

  • Blaxter JHS (1991) The effect of temperature on larval fishes. Neth J Zool 42:336–357

    Article  Google Scholar 

  • Block BA and Stevens ED (2001) Tuna: physiology, ecology, and evolution. Academic Press, London

    Google Scholar 

  • Block BA, Finnerty JR, Stewart AF, Kidd J (1993) Evolution of endothermy in fish: mapping physiological traits on a molecular phylogeny. Science 260:210. doi:10.1126/science.8469974

    Article  CAS  PubMed  Google Scholar 

  • Block BA, Keen JE, Castillo B, Dewar H, Freund EV, Marcinek DJ, Brill RW, Farwell C (1997) Environmental preferences of yellowfin tuna (Thunnus albacares) at the northern extent of its range. Mar Biol 130:119–132

    Article  Google Scholar 

  • Boehlert GW, Mundy BC (1993) Ichthyoplankton assemblages at seamounts and oceanic islands. Bull Mar Sci 53:336–361

    Google Scholar 

  • Bonin A (2008) Population genomics: a new generation of genome scans to bridge the gap with functional genomics. Mol Ecol 17:3583–3584. doi:10.1111/j.1365-294X.2008.03854.x

    Article  PubMed  Google Scholar 

  • Brill RW (1987) On the standard metabolic rates of tropical tunas, including the effect of body size and acute temperature change. Fish Bull 85:25–35

    Google Scholar 

  • Brill RW (1994) A review of temperature and oxygen tolerances studies of tunas, pertinent to fisheries oceanography, movement models, and stock assessments. Fish Oceanogr 3:206–216

    Article  Google Scholar 

  • Brill RW (1996) Selective advantages conferred by the high performance physiology of tunas, billfishes, and dolphin fish. Comp Biochem Physiol A Physiol 113:3–15

    Article  Google Scholar 

  • Brill RW, Bushnell PG (1991) Metabolic and cardiac scope of high energy demand teleosts—the tunas. Can J Zool 69:2002–2009

    Article  Google Scholar 

  • Brill RW, Bushnell PG (2001) The cardiovascular system of tunas. In: Block BA, Stevens ED (eds) Tunas: physiology, ecology and evolution, vol 19. Academic, San Diego, pp 79–120

    Chapter  Google Scholar 

  • Brill RW, Lutcavage ME (2001) Understanding environmental influences on movements and depth distributions of tunas and billfishes can significantly improve population assessments. In: American fisheries society symposium. American Fisheries Society, pp 179–198

  • Brill RW, Lowe TE, Cousins KL (1998) How water temperature really limits the vertical movements of tunas and billfishes-it’s the heart stupid. In: International congress on biology of fish. American Fisheries Society, Towson University 4, pp 57–62

  • Brill RW, Block B, Boggs C, Bigelow K, Freund E, Marcinek D (1999) Horizontal movements and depth distribution of large, adult yellowfin tuna (Thunnus albacares) near the Hawaiian Islands, recorded using ultrasonic telemetry: implications for the physiological ecology of pelagic fishes. Mar Biol 133:395–408

    Article  Google Scholar 

  • Broadhead GC (1962) Recent changes in the efficiency of vessels fishing for yellowfin tuna in the eastern Pacific Ocean. Int Am Trop Tuna Commis Bull 6:281–332

    Google Scholar 

  • Brown-Peterson NJ, Wyanski DM, Saborido-Rey F, Macewicz BJ, Lowerre-Barbieri SK (2011) A standardized terminology for describing reproductive development in fishes. Mar Coast Fish 3:52–70. doi:10.1080/19425120.2011.555724

    Article  Google Scholar 

  • Brown-Peterson NJ, Franks JS, Gibson DM, Marshall C (2013) Aspects of the reproductive biology of yellowfin tuna, Thunnus albacares, in the Northern Gulf of Mexico. In: Proceedings of the Sixty six Annual Gulf and Caribbean Fisheries Institute, vol 66. Corpus Christy, pp 509–510

  • Bushnell PG, Brill RW (1992) Oxygen transport and cardiovascular responses in skipjack tuna (Katsuwonus pelamis) and yellowfin tuna (Thunnus albacares) exposed to acute hypoxia. J Comp Physiol B 162:131–143. doi:10.1007/BF00398338

    Article  CAS  PubMed  Google Scholar 

  • Bushnell PG, Brill RW, Bourke RE (1990) Cardiorespiratory responses of skipjack tuna (Katsuwonus pelamis), yellowfin tuna (Thunnus albacares), and bigeye tuna (Thunnus obesus) to acute reductions of ambient oxygen. Can J Zool 68:1857–1865. doi:10.1139/z90-265

    Article  Google Scholar 

  • Capietto A, Escalle L, Chavance P, Dubroca L, de Molina AD, Murua H, Floch L, Damiano A, Rowat D, Merigot B (2014) Mortality of marine megafauna induced by fisheries: insights from the whale shark, the world’s largest fish. Biol Conserv 174:147–151. doi:10.1016/j.biocon.2014.03.024

    Article  Google Scholar 

  • Capisano C (1991) Analysis of length frequencies, sex ratio and reproduction zones of the yellowfin Thunnus albacares in the Atlantic. ICCAT Coll Vol Sci Pap 36:214–279

    Google Scholar 

  • Cardinale M, Arrhenius F (2000) The relationship between stock and recruitment: are the assumptions valid? Mar Ecol Prog Ser 196:305–309

    Article  Google Scholar 

  • Carey FG, Teal JM (1966) Heat conservation in tuna fish muscle. Proc Natl Acad Sci 56:1464–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlsson J, McDowell JR, Carlsson JEL, Graves JE (2007) Genetic identity of YOY Bluefin Tuna from the Eastern and Western Atlantic qpawning areas. J Hered 98:23–28. doi:10.1093/jhered/esl046

    Article  CAS  PubMed  Google Scholar 

  • Carruthers T, Fonteneau A, Hallier JP (2014) Estimating tag reporting rates for tropical tuna fleets of the Indian Ocean. Fish Res 155:20–32

    Article  Google Scholar 

  • Carvalho GR, Hauser L (1995) Molecular genetics and the stock concept in fisheries. In: Carvalho GR, Pitcher TJ (eds) Molecular genetics in fisheries. Springer, Netherlands, pp 55–79

    Chapter  Google Scholar 

  • Cayré P, Amon Kothias JB, Diouf T, Stretta JM (1988) Biologie des thons. In: Fonteneau A, Marcille J (eds) Ressources, pêche et biologie des thonidés tropicaux de l’Atlantique centre-est, Document Technique sur les Pêches—FAO. FAO, Rome, pp 157–268

    Google Scholar 

  • Chassot E., Dewals P, Floch L, Lucas V, Morales-Vargas M, Kaplan D (2010) Analysis of the effects of Somali piracy on the European tuna purse seine fisheries of the Indian Ocean. IOTC Sci. Comm. Rep. IOTC-2010-SC-09 Indian Ocean Tuna Comm. Vic. Seychelles. 26

  • Chassot E, Floch L, Dewals P, Amandè MJ, Damiano A, Cauquil P, Rahombanjanahary DM, Chavance P (2014) Fishing activities of the French and associated flags purse seiners targeting tropical tunas in the Indian Ocean (1981–2013). In: 16ème groupe de travail sur les thons tropicaux. CTOI, Victoria, 47

  • Chavance P, Dewals P, Amandè M-J, Delgado de Molina A, Damiano A, Tamegnon A (2015) Tuna fisheries catch landed in Abidjan (Côte d’Ivoire) and sold on local fish market for the period 1982–2013 (preliminary data). SCRS/2014/063

  • Chiang H-C, Hsu C-C, Wu GC-C, Chang S-K, Yang H- (2008) Population structure of bigeye tuna (Thunnus obesus) in the Indian Ocean inferred from mitochondrial DNA. Fish Res 90:305–312. doi:10.1016/j.fishres.2007.11.006

    Article  Google Scholar 

  • Chow S, Inoue S (1993) Intra-and interspecific restriction fragment length polymorphism in mitochondrial genes of Thunnus tuna species. Bull Natl Res Inst Far Seas Fish 30:207–225

    Google Scholar 

  • Chow S, Takeyama H (2000) Nuclear and mitochondrial DNA analyses reveal four genetically separated breeding units of the swordfish. J Fish Biol 56:1087–1098. doi:10.1111/j.1095-8649.2000.tb02125.x

    Article  CAS  Google Scholar 

  • Chow S, Okamoto H, Uozumi Y, Takeuchi Y, Takeyama H (1997) Genetic stock structure of the swordfish (Xiphias gladius) inferred by PCR-RFLP analysis of the mitochondrial DNA control region. Mar Biol 127:359–367

    Article  Google Scholar 

  • Chow S, Hazama K, Nishida T, Ikame S, Kurihara S (2000) A preliminary genetic analysis on yellowfin tuna stock structure in the Indian Ocean using mitochondrial DNA variation. WPTT00–11 IOTC Proc., 3:312–316

  • Collette BB, Carpenter KE, Polidoro BA, Juan-Jordá MJ, Boustany A, Die DJ, Elfes C, Fox W, Graves J, Harrison LR et al (2011) High value and long life—double Jeopardy for Tunas and Billfishes. Science 333:291–292. doi:10.1126/science.1208730

    Article  CAS  PubMed  Google Scholar 

  • Dagorn L, Holland KN, Hallier J-P, Taquet M, Moreno G, Sancho G, Itano DG, Aumeeruddy R, Girard C, Million J et al (2006) Deep diving behavior observed in yellowfin tuna (Thunnus albacares). Aquat Living Resour 19:85–88. doi:10.1051/alr:2006008

    Article  Google Scholar 

  • Dammannagoda ST, Hurwood DA, Mather PB (2008) Evidence for fine geographical scale heterogeneity in gene frequencies in yellowfin tuna (Thunnus albacares) from the north Indian Ocean around Sri Lanka. Fish Res 90:147–157. doi:10.1016/j.fishres.2007.10.006

    Article  Google Scholar 

  • Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510. doi:10.1038/nrg3012

    Article  CAS  PubMed  Google Scholar 

  • Davies TK, Mees CC, Milner-Gulland EJ (2014) Modelling the spatial behaviour of a tropical tuna purse seine fleet. PLoS ONE 9:e114037. doi:10.1371/journal.pone.0114037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davis JC (1975) Minimal dissolved oxygen requirements of aquatic life with emphasis on Canadian species: a review. J Fish Board Can 32:2295–2332

    Article  Google Scholar 

  • Dewar H, Graham J (1994) Studies of tropical tuna swimming performance in a large water tunnel-Energetics. J Exp Biol 192:13–31

    CAS  PubMed  Google Scholar 

  • Diaha NC, Zudaire I, Chassot E, Pecoraro C, Bodin N, Amandè MJ, Dewals P, Roméo MU, Irié YD, Barryga BD et al (2015) Present and future of reproductive biology studies of yellowfin tuna (Thunnus albacares) in the eastern Atlantic Ocean. Collect Vol Sci Pap ICCAT 71:489–509

    Google Scholar 

  • Díaz-Jaimes P, Uribe-Alcocer M (2006) Spatial differentiation in the eastern Pacific yellowfin tuna revealed by microsatellite variation. Fish Sci 72:590–596. doi:10.1111/j.1444-2906.2006.01188.x

    Article  Google Scholar 

  • Dickson KA (1996) Locomotor muscle of high-performance fishes: what do comparisons of tunas with ectothermic sister taxa reveal? Comp Biochem Physiol A Physiol 113:39–49. doi:10.1016/0300-9629(95)02056-X

    Article  Google Scholar 

  • Die DJ, Restrepo VR, Fox WW Jr (1990) Equilibrium production models that incorporate fished area. Trans Am Fish Soc 119:445–454

    Article  Google Scholar 

  • Dortel E, Sardenne F, Bousquet N, Rivot E, Million J, Le Croizier G, Chassot E (2015) An integrated Bayesian modeling approach for the growth of Indian Ocean yellowfin tuna. Fish Res 163:69–84. doi:10.1016/j.fishres.2014.07.006

    Article  Google Scholar 

  • Driggers WB III, Grego JM, Dean JM (1999) Age and growth of yellowfin tuna (Thunnus albacares) in the western North Atlantic Ocean. Collect Vol Sci Pap ICCAT 49:374–383

    Google Scholar 

  • Ely B, Viñas J, Bremer JRA, Black D, Lucas L, Covello K, Labrie AV, Thelen E (2005) Consequences of the historical demography on the global population structure of two highly migratory cosmopolitan marine fishes: the yellowfin tuna (Thunnus albacares) and the skipjack tuna (Katsuwonus pelamis). BMC Evol Biol 5:19. doi:10.1186/1471-2148-5-19

    Article  PubMed  PubMed Central  Google Scholar 

  • Eveson JP, Million J, Sardenne F, Le Croizier G (2015) Estimating growth of tropical tunas in the Indian Ocean using tag-recapture data and otolith-based age estimates. Fish Res 163:58–68. doi:10.1016/j.fishres.2014.05.016

    Article  Google Scholar 

  • Farrell AP, Davie PS, Franklin CE, Johansen JA, Brill RW (1992) Cardiac physiology in tunas. I. In vitro perfused heart preparations from yellowfin and skipjack tunas. Can J Zool 70:1200–1210

    Article  Google Scholar 

  • Felando A (1987) US tuna fleet ventures in the Pacific islands. Tuna Issues Perspect. Pac Isl Reg, pp 93–104

  • Finnerty JR, Block BA (1992) Direct sequencing of mitochondrial DNA detects highly divergent haplotypes in blue marlin (Makaira nigricans). Mol Mar Biol Biotechnol 1:206–214

    CAS  PubMed  Google Scholar 

  • Fonteneau A (1997) Atlas of tropical tuna fisheries. World catches and environment. ORSTOM editions, Paris Cedex, pp 192

    Google Scholar 

  • Fonteneau A (2002) Estimated sex ratio of large yellowfin taken by purse seiners in the indian ocean; comparison with other oceans. IOTC Proc 5:279–281

    Google Scholar 

  • Fonteneau A (2010) Atlas of Indian Ocean tuna fisheries. IRD, Marseille

    Google Scholar 

  • Fonteneau A, Chassot E (2013) An overview of yellowfin tuna growth in the Atlantic ocean: von Bertalanffy or multistanza growth? Collect Vol Sci Pap ICCAT 69:2059–2075

    Google Scholar 

  • Fonteneau A, Diouf T (1994) An efficient way of bait-fishing for tunas recently developed in Senegal. Aquat Living Resour 7:139–151. doi:10.1051/alr:1994017

    Article  Google Scholar 

  • Fonteneau A, Hallier J-P (2015) Fifty years of dart tag recoveries for tropical tuna: a global comparison of results for the western Pacific, eastern Pacific, Atlantic, and Indian Oceans. Fish Res 163:7–22. doi:10.1016/j.fishres.2014.03.022

    Article  Google Scholar 

  • Fonteneau A, Pallarés P (2005) Tuna natural mortality as a function of their age: the bigeye tuna (Thunnus obesus) case. Collect Vol Sci Pap ICCAT 57:127–141

    Google Scholar 

  • Frank SJ, Saillant EA, Brown-Peterson N (2015) Studies of reproductive biology, feeding ecology and conservation genetics of yellowfin tuna (Thunnus albacares) in the northern Gulf of Mexico. Final Report, Louisiana Department of wildlife and fisheries

  • Fréon P, Dagorn L (2000) Review of fish associative behaviour: toward a generalisation of the meeting point hypothesis. Rev Fish Biol Fish 10:183–207. doi:10.1023/A:1016666108540

    Article  Google Scholar 

  • Fromentin JM, Allen R, Hampton J, Anganuzzi A, Exel A, Sainsbury K, Restrepo V (in press) Managing tuna fisheries in the context of exclusive economic zones (EEZs) and marine areas beyond national jurisdiction. Rev Fish Biol Fish

  • Gagnaire P-A, Broquet T, Aurelle D, Viard F, Souissi A, Bonhomme F, Arnaud-Haond S, Bierne N (2015) Using neutral, selected, and hitchhiker loci to assess connectivity of marine populations in the genomic era. Evol Appl 8:769–786. doi:10.1111/eva.12288

    Article  PubMed  PubMed Central  Google Scholar 

  • Galli GL, Shiels HA, Brill RW (2009) Temperature sensitivity of cardiac function in pelagic fishes with different vertical mobilities: yellowfin tuna (Thunnus albacares), bigeye tuna (Thunnus obesus), mahimahi (Coryphaena hippurus), and swordfish (Xiphias gladius). Physiol Biochem Zool 82:280–290. doi:10.1086/597484

    Article  PubMed  Google Scholar 

  • Gascuel D, Fonteneau A, Capisano C (1992) Modélisation d’une croissance en deux stances chez l’albacore (Thunnus albacares) de l’Atlantique Est. Aquat Living Resour 5:155–172. doi:10.1051/alr:1992016

    Article  Google Scholar 

  • Geehan J, Pierre L (2015) Review of the statistical data and fishery trends for tropical tunas. In: IOTC Proceedings. Montpellier, France, 23–28 October 2015, IOTC-2015-WPTT17-07, 35 p

  • Gillett R (2007) A short history of industrial fishing in the Pacific Islands. FAO RAP Publication 2007/22, 23 p

  • Gislason H, Daan N, Rice JC, Pope JG (2010) Size, growth, temperature and the natural mortality of marine fish. Fish Fish 11:149–158. doi:10.1111/j.1467-2979.2009.00350.x

    Article  Google Scholar 

  • Graham JB, Dickson KA (2000) The evolution of thunniform locomotion and heat conservation in scombrid fishes: new insights based on the morphology of Allothunnus fallai. Zool J Linn Soc 129:419–466. doi:10.1111/j.1096-3642.2000.tb00612.x

    Article  Google Scholar 

  • Graham JB, Dickson KA (2004) Tuna comparative physiology. J Exp Biol 207:4015–4024. doi:10.1242/jeb.01267

    Article  PubMed  Google Scholar 

  • Graham BS, Grubbs D, Holland K, Popp BN (2007) A rapid ontogenetic shift in the diet of juvenile yellowfin tuna from Hawaii. Mar Biol 150:647–658. doi:10.1007/s00227-006-0360-y

    Article  Google Scholar 

  • Graves JE, McDowell JR (1995) Inter-ocean genetic divergence of istiophorid billfishes. Mar Biol 122:193–203. doi:10.1007/BF00348932

    Google Scholar 

  • Greenblatt PR (1979) Associations of tuna with flotsam in the eastern tropical Pacific. Fish Bull 77:147–155

    Google Scholar 

  • Grewe PM, Feutry P, Hill PL, Gunasekera RM, Schaefer KM, Itano DG, Fuller DW, Foster SD, Davies CR (2015) Evidence of discrete yellowfin tuna (Thunnus albacares) populations demands rethink of management for this globally important resource. Sci Rep 5:16916. doi:10.1038/srep16916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hampton J (2000) Natural mortality rates in tropical tunas: size really does matter. Can J Fish Aquat Sci 57:1002–1010. doi:10.1139/f99-287

    Article  Google Scholar 

  • Hampton J, Fournier DA (2001) A spatially disaggregated, length-based, age-structured population model of yellowfin tuna (Thunnus albacares) in the western and central Pacific Ocean. Mar Freshw Res 52:937–963. doi:10.1071/MF01049

    Article  Google Scholar 

  • Hampton J, Kleiber P, Langley A, Hiramatsu M (2004) Stock assessment of yellowfin tuna in the western and central Pacific Ocean. WP SA‐1, SCTB 17, Majuro, Republic of Marshall

  • Hampton J, Kleiber P, Langley A, Takeuchi Y, Ichinokawa M (2005) Stock assessment of yellowfin tuna in the western and central Pacific Ocean. WCPFC SC1 SA WP‐1, Noumea, New Caledonia

  • Hampton J, Langley A, Kleiber P (2006) Stock assessment of yellowfin tuna in the western and central Pacific Ocean, including an analysis of management options. WCPFC SC2 SA WP‐1, Manila, Philippines

  • Hauser L, Carvalho GR (2008) Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts. Fish Fish 9:333–362. doi:10.1111/j.1467-2979.2008.00299.x

    Article  Google Scholar 

  • Hauser L, Adcock GJ, Smith PJ, Ramírez JHB, Carvalho GR (2002) Loss of microsatellite diversity and low effective population size in an overexploited population of New Zealand snapper (Pagrus auratus). Proc Natl Acad Sci 99:11742–11747. doi:10.1073/pnas.172242899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoolihan JP, Wells RJD, Luo J, Falterman B, Prince ED, Rooker JR (2014) Vertical and horizontal movements of yellowfin tuna in the Gulf of Mexico. Mar Coast Fish 6:211–222. doi:10.1080/19425120.2014.935900

    Article  Google Scholar 

  • Horodysky AJ, Cooke SJ, Graves JE, Brill RW (2016) Fisheries conservation on the high seas: linking conservation physiology and fisheries ecology for the management of pelagic fishes. Conserv Physiol 4.1, cov059. doi:10.1093/conphys/cov059

  • Hyde JR, Lynn E, JrR Humphreys, Musyl M, West AP, Vetter R (2005) Shipboard identification of fish eggs and larvae by multiplex PCR, and description of fertilized eggs of blue marlin, shortbill spearfish, and wahoo. Mar Ecol Prog Ser 286:269–277. doi:10.3354/meps286269

    Article  CAS  Google Scholar 

  • IOTC (2015) Status of the Indian Ocean yellowfin tuna (YFT: Thunnus albacares) resource. IOTC–2015–SC18–ES04[E]

  • Itano D (2000) The reproductive biology of yellowfin tuna (Thunnus albacares) in Hawaiian waters and the western tropical Pacific Ocean: project summary. University of Hawaii, Joint Institute for Marine and Atmospheric Research Hawaii

  • Itano D (2005) A handbook for the identification of yellowfin and bigeye tunas in fresh condition. Pelagic Fish Res Program Honol Hawaii USA Ver 2:1–27

    Google Scholar 

  • Itano D, Holland N (2000) Movement and vulnerability of bigeye (Thunnus obesus) and yellowfin tuna (Thunnus albacares) in relation to FADs and natural aggregation points. Aquat Living Resour 13:213–223. doi:10.1016/S0990-7440(00)01062-7

    Article  Google Scholar 

  • Juan-Jordá MJ, Mosqueira I, Cooper AB, Freire J, Dulvy NK (2011) Global population trajectories of tunas and their relatives. Proc Natl Acad Sci 108:20650–20655. doi:10.1073/pnas.1107743108

    Article  PubMed  PubMed Central  Google Scholar 

  • Juan-Jordá MJ, Mosqueira I, Freire J, Dulvy NK (2013a) The conservation and management of tunas and their relatives: setting life history research priorities. PLoS ONE 8:e70405. doi:10.1371/journal.pone.0070405

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Juan-Jordá MJ, Mosqueira I, Freire J, Dulvy NK (2013b) Life in 3-D: life history strategies in tunas, mackerels and bonitos. Rev Fish Biol Fish 23:135–155. doi:10.1007/s11160-012-9284-4

    Article  Google Scholar 

  • Júnior TV, Vooren CM, Lessa RP (2003) Feeding strategy of yellowfin tuna (Thunnus albacares), and wahoo (Acanthocybium solandri) in the Saint Peter and Saint Paul Archipelago, Brazil. Bol Inst Pesca São Paulo 29:173–181

    Google Scholar 

  • Kai TE, Marsac F (2010) Influence of mesoscale eddies on spatial structuring of top predators’ communities in the Mozambique Channel. Prog Oceanogr 86:214–223. doi:10.1016/j.pocean.2010.04.010

    Article  Google Scholar 

  • Kell LT, Nash RD, Dickey-Collas M, Mosqueira I, Szuwalski C (2015) Is spawning stock biomass a robust proxy for reproductive potential? Fish Fish 1:596–616. doi:10.1111/faf.12131

    Google Scholar 

  • Kolody DS, Eveson JP, Hillary RM (2016) Modelling growth in tuna RFMO stock assessments: current approaches and challenges. Growth Theory Estim Appl Fish Stock Assess Models 180:177–193. doi:10.1016/j.fishres.2015.06.016

    Google Scholar 

  • Korsmeyer KE, Dewar H(2001) Tuna metabolism and energetics. In: Block BA, Stevens ED (eds) Tunaphysiology, ecology, and evolution. Academic Press, San Diego, pp 36–78. doi:10.1016/S1546-5098(01)19003-5

  • Korsmeyer KE, Lai NC, Shadwick RE, Graham JB (1997) Heart rate and stroke volume contribution to cardiac output in swimming yellowfin tuna: response to exercise and temperature. J Exp Biol 200:1975–1986

    CAS  PubMed  Google Scholar 

  • Kunal SP, Kumar G, Menezes MR, Meena RM (2013) Mitochondrial DNA analysis reveals three stocks of yellowfin tuna Thunnus albacares (Bonnaterre, 1788) in Indian waters. Conserv Genet 14:205–213. doi:10.1007/s10592-013-0445-3

    Article  Google Scholar 

  • Lang KL, Grimes CB, Shaw RF (1994) Variations in the age and growth of yellowfin tuna larvae, Thunnus albacares, collected about the Mississippi River plume. Environ Biol Fishes 39:259–270. doi:10.1007/BF00005128

    Article  Google Scholar 

  • Langley A, Million J (2012) Determining an appropriate tag mixing period for the Indian Ocean yellowfin tuna stock assessment. IOTC-2012-WPTT-14-31

  • Langley A, Harley S, Hoyle S, Davies N, Hampton J, Kleiber P (2009) Stock assessment of yellowfin tuna in the western and central Pacific Ocean. WCPFC SC5 SA WP‐3, Port Vila, Vanuatu

  • Langley A, Hoyle S, Hampton J (2011) Stock assessment of yellowfin tuna in the western and central Pacific Ocean. WCPFC SC7 SA WP‐3, Pohnpei, Federated States of Micronesia

  • Le Guen JC, Sakagawa GT (1973) Apparent growth of yellowfin tuna from the eastern Atlantic Ocean. Fish Bull 71:175–187

    Google Scholar 

  • Le Guen JC, Poinsard F, Troadec JP (1965) The yellowfin tuna fishery in the eastern tropical Atlantic. Commer Fish Rev 27:7–18

    Google Scholar 

  • Lehodey P, Leroy B (1999) Age and growth of yellowfin tuna (Thunnus albacares) from the western and central Pacific Ocean as indicated by daily growth increments and tagging data. WP YFT-2 SCTB 12, 16–23

  • Lehodey P, Senina I, Murtugudde R (2008) A spatial ecosystem and populations dynamics model (SEAPODYM)—modeling of tuna and tuna-like populations. Prog Oceanogr 78:304–318

    Article  Google Scholar 

  • Lehodey P, Hampton J, Brill RW, Nicol S, Senina I, Calmettes B, Pörtner L, Bopp L, Ilyina T, Bell JD, Sibert J (2011) Vulnerability of oceanic fisheries in the tropical Pacific to climate change. In: Bell J, Johnson JE, Hobday AJ (eds) Vulnerability of tropical pacific fisheries and aquaculture to climate change. Secretariat of the Pacific Community, Noumea

    Google Scholar 

  • Lessa R, Duarte-Neto P (2004) Age and growth of yellowfin tuna (Thunnus albacares) in the western equatorial Atlantic, using dorsal fin spines. Fish Res 69:157–170. doi:10.1016/j.fishres.2004.05.007

    Article  Google Scholar 

  • Li W, Chen X, Xu Q, Zhu J, Dai X, Xu L (2015) Genetic population structure of Thunnus albacares in the Central Pacific Ocean Based on mtDNA COI gene sequences. Biochem Genet 53:8–22. doi:10.1007/s10528-015-9666-0

    Article  CAS  PubMed  Google Scholar 

  • Lorenzen K (1996) The relationship between body weight and natural mortality in juvenile and adult fish: a comparison of natural ecosystems and aquaculture. J Fish Biol 49:627–642. doi:10.1111/j.1095-8649.1996.tb00060.x

    Article  Google Scholar 

  • Lorrain A, Graham BS, Popp BN, Allain V, Olson RJ, Hunt BP, Potier M, Fry B, Galván-Magaña F, Menkes CE, Kaelher S, Ménard F (2015) Nitrogen isotopic baselines and implications for estimating foraging habitat and trophic position of yellowfin tuna in the Indian and Pacific Oceans. Deep Sea Res Part II Top Stud Oceanogr 113:188–198. doi:10.1016/j.dsr2.2014.02.003

    Article  CAS  Google Scholar 

  • Lowerre-Barbieri SK, Ganias K, Saborido-Rey F, Murua H, Hunter JR (2011) Reproductive timing in marine fishes: variability, temporal scales, and methods. Mar Coast Fish 3:71–91. doi:10.1080/19425120.2011.556932

    Article  Google Scholar 

  • Lumineau O (2002) Study of the growth of Yellowfin tuna (Thunnus albacares) in the Western Indian Ocean based on length frequency data. In: IOTC Proceedings, pp 316–327

  • Magnuson JJ (1979) 4 Locomotion by Scombrid fishes: hydromechanics, morphology, and behavior. Fish Physiol 7:239–313

    Article  Google Scholar 

  • Maldeniya R (1996) Food consumption of yellowfin tuna, Thunnus albacares, in Sri Lankan waters. Environ Biol Fishes 47:101–107. doi:10.1007/BF00002384

    Article  Google Scholar 

  • Margulies D, Wexler JB, Bentler KT, Suter JM, Masuma S, Tezuka N, Teruya K, Oka M, Kanematsu M, Nikaido H (2001) Food selection of yellowfin tuna, Thunnus albacares, larvae reared in the laboratory. Coll Vol Sci Pap ICCAT 22:9–33

    Google Scholar 

  • Margulies D, Sutter JM, Hunt SL, Olson RJ, Scholey VP, Wexler JB, Nakazawa A (2007) Spawning and early development of captive yellowfin tuna (Thunnus albacares). Fish Bull 105:249–265

    Google Scholar 

  • Marshall CT, Needle CL, Thorsen A, Kjesbu OS, Yaragina NA (2006) Systematic bias in estimates of reproductive potential of an Atlantic cod (Gadus morhua) stock: implications for stock recruit theory and management. Can J Fish Aquat Sci 63:980–994. doi:10.1139/f05-270

    Article  Google Scholar 

  • Marshall DJ, Heppell SS, Munch SB, Warner RR (2010) The relationship between maternal phenotype and offspring quality: do older mothers really produce the best offspring? Ecology 91:2862–2873. doi:10.1890/09-0156.1

    Article  PubMed  Google Scholar 

  • Martínez P, González EG, Castilho R, Zardoya R (2006) Genetic diversity and historical demography of Atlantic bigeye tuna (Thunnus obesus). Mol Phylogenet Evol 39:404–416. doi:10.1016/j.ympev.2005.07.022

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto T, Bayliff WH (2008) A review of the Japanese longline fishery for tunas and billfishes in the eastern Pacific Ocean, 1998–2003. IATTC Bull 24(1):1–187

    Google Scholar 

  • Maufroy A, Kaplan DM, Bez B, Delgado de Molina A, Murua H, Floch L, Chassot E (2016) Massive increase in the use of artificial fish aggregating devices by purse seine fisheries in the Indian and Atlantic Oceans. ICES J Mar Sci. doi:10.1093/icesjms/fsw175

    Google Scholar 

  • McPherson GR (1991) Reproductive biology of yellowfin tuna in the eastern Australian fishing zone, with special reference to the north-western Coral Sea. Mar Freshw Res 42:465–477. doi:10.1071/MF9910465

    Article  Google Scholar 

  • Ménard F, Labrune C, Shin Y-J, Asine A-S, Bard F-X et al (2006) Opportunistic predation in tuna: a size-based approach. Mar Ecol Prog Ser 323:223–231. doi:10.3354/meps323223

    Article  Google Scholar 

  • Michelini E, Cevenini L, Mezzanotte L, Simoni P, Baraldini M, De Laude L, Roda A (2007) One-step triplex-polymerase chain reaction assay for the authentication of yellowfin (Thunnus albacares), bigeye (Thunnus obesus), and skipjack (Katsuwonus pelamis) tuna DNA from fresh, frozen, and canned tuna samples. J Agric Food Chem 55:7638–7647. doi:10.1021/jf070902k

    Article  CAS  PubMed  Google Scholar 

  • Minte-Vera CV, Aires-da-Silva A, Maunder MN (2016) Status of yellowfin tuna in the eastern Pacific Ocean in 2015 and outlook for the future. Inter-Amer. Trop. Tuna Comm, 7th Scient. Adv. Com. Meeting. SAC-07-05b

  • Miyake M, Guillotreau P, Sun C-H, Ishimura G (2010) Recent developments in the tuna industry: stocks, fisheries, management, processing, trade and markets. FAO fisheries and aquaculture technical paper no. 543. Food and Agriculture Organization of the United Nations, Rome

  • Morato T, Hoyle SD, Allain V, Nicol SJ (2010) Seamounts are hotspots of pelagic biodiversity in the open ocean. Proc Natl Acad Sci 107:9707–9711. doi:10.1073/pnas.0910290107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan MJ, Murua H, Kraus G, Lambert Y, Marteinsdottir G, Marshall CT, O’Brien L, Tomkiewicz J (2009) The evaluation of reference points and stock productivity in the context of alternative indices of stock reproductive potential. Can J Fish Aquat Sci 66:404–414. doi:10.1139/F09-009

    Article  Google Scholar 

  • Murawski SA, Rago PJ, Trippel EA (2001) Impacts of demographic variation in spawning characteristics on reference points for fishery management. ICES J Mar Sci J Cons 58:1002–1014

    Article  Google Scholar 

  • Murua H, Kraus G, Saborido-Rey F, Witthames PR, Thorsen A, Junquera S et al (2003) Procedures to estimate fecundity of marine fish species in relation to their reproductive strategy. J Northwest Atl Fish Sci 33:33–54. doi:10.2960/J.v33.a3

    Article  Google Scholar 

  • Murua H, Rodríguez-Marin E, Neilson J, Farley J, Juan-Jorda MJ (in press) Fast versus slow growing tuna species – age, growth, and implications for population dynamics and fisheries management. Rev Fish Biol Fish

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nishida T, Chow S, Ikame S, Kurihara S (2001) RFLP analysis on single copy nuclear gene loci in yellowfin tuna (Thunnus albacares) to examine the genetic differentiation between the western and eastern samples from the Indian Ocean. Proc Fish Oceanogr 1:143–152. doi:10.1111/j.1365-2419.1992.tb00033.x

    Article  Google Scholar 

  • Nootmorn P, Yakoh A, Kawises K (2005) Reproductive biology of yellowfin tuna in the Eastern Indian Ocean. IOTC-WPTT 14:379–385

    Google Scholar 

  • Olson RJ, Boggs CH (1986) Apex predation by yellowfin tuna (Thunnus albacares): independent estimates from gastric evacuation and stomach contents, bioenergetics, and cesium concentrations. Can J Fish Aquat Sci 43:1760–1775

    Article  Google Scholar 

  • Palstra FP, Fraser DJ (2012) Effective/census population size ratio estimation: a compendium and appraisal. Ecol Evol 2:2357–2365. doi:10.1002/ece3.329

    Article  PubMed  PubMed Central  Google Scholar 

  • Palstra FP, Ruzzante DE (2008) Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? Mol Ecol 17:3428–3447. doi:10.1111/j.1365-294X.2008.03842.x

    Article  PubMed  Google Scholar 

  • Pauly D, Zeller D (2016) Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Nat Commun 7:10244. doi:10.1038/ncomms10244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pecoraro C (2016) Global population genomic structure and life history trait analysis of yellowfin tuna (Thunnus albacares). Ph.D. thesis dissertation, University of Bologna

  • Pecoraro C, Babbucci M, Villamor A, Franch R, Papetti C, Leroy B, Ortega-Garcia S, Muir J, Rooker J, Arocha F et al (2016) Methodological assessment of 2b-RAD genotyping technique for population structure inferences in yellowfin tuna (Thunnus albacares). Mar Genomics 25:43–48. doi:10.1016/j.margen.2015.12.002

    Article  PubMed  Google Scholar 

  • Pedrosa-Gerasmio IR, Babaran RP, Santos MD (2012) Discrimination of juvenile yellowfin (Thunnus albacares) and bigeye (T. obesus) tunas using mitochondrial DNA control region and liver morphology. PLoS ONE 7:e35604. doi:10.1371/journal.pone.0035604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potier M, Marsac F, Lucas V, Sabatié R, Hallier J-P, Ménard F (2005) Feeding partitioning among tuna taken in surface and mid-water layers: the case of yellowfin (Thunnus albacares) and bigeye (T. obesus) in the western tropical Indian Ocean. West Indian Ocean J Mar Sci 3:51–62

    Google Scholar 

  • Potier M, Marsac F, Cherel Y, Lucas V, Sabatié R, Maury O, Ménard F (2007) Forage fauna in the diet of three large pelagic fishes (lancetfish, swordfish and yellowfin tuna) in the western equatorial Indian Ocean. Fish Res 83:60–72. doi:10.1016/j.fishres.2006.08.020

    Article  Google Scholar 

  • Priede IG (1985) Metabolic scope in fishes. In: Tytler P, Calow P (eds) Fish energetics: new perspectives. Croom Helm, London, pp 33–64

    Chapter  Google Scholar 

  • Prince ED, Goodyear CP (2006) Hypoxia based habitat compression of tropical pelagic fishes. Fish Oceanogr 15(6):451–464. doi:10.1111/j.1365-2419.2005.00393.x

    Article  Google Scholar 

  • Puncher GN, Arrizabalaga H, Alemany F, Cariani A, Oray IK, Karakulak FS, Basilone G, Cuttitta A, Mazzola S, Tinti F (2015) Molecular Identification of Atlantic Bluefin Tuna (Thunnus thynnus, Scombridae) Larvae and development of a DNA character-based identification key for Mediterranean Scombrids. PLoS ONE 10:e0130407. doi:10.1371/journal.pone.0130407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ratty FJ, Song YC, Laurs RM (1986) Chromosomal analysis of albacore, Thunnus alalunga, and yellowfin, Thunnus albacares, and Skipjack, Katsuwonus pelamis, Tuna. Fish Bull 84:469–476

    Google Scholar 

  • Ravier C, Fromentin JM (2001) Long-term fluctuations in the eastern Atlantic and Mediterranean bluefin tuna population. ICES J Mar Sci 58:1299–1317. doi:10.1006/jmsc.2001.1119

    Article  Google Scholar 

  • Reglero P, Tittensor DP, Álvarez-Berastegui D, Aparicio-González A, Worm B (2014) Worldwide distributions of tuna larvae: revisiting hypotheses on environmental requirements for spawning habitats. Mar Ecol Prog Ser 501:207–224. doi:10.3354/meps10666

    Article  Google Scholar 

  • Reintjes JW, King JE (1953) Food of yellowfin tuna in the central Pacific. Fish Bull 54:90–110

    Google Scholar 

  • Reygondeau G, Maury O, Beaugrand G, Fromentin JM, Fonteneau A, Cury P (2012) Biogeography of tuna and billfish communities. J Biogeogr 39:114–129. doi:10.1111/j.1365-2699.2011.02582.x

    Article  Google Scholar 

  • Rijnsdorp AD (1990) The mechanism of energy allocation over reproduction and somatic growth in female North Sea plaice, Pleuronectes platessa L. Neth J Sea Res 25:279–289. doi:10.1016/0077-7579(90)90027-E

    Article  Google Scholar 

  • Robert M, Dagorn L, Deneubourg J, Itano D, Holland K (2012) Size-dependent behavior of tuna in an array of fish aggregating devices (FADs). Mar Biol 159:907–914. doi:10.1007/s00227-011-1868-3

    Article  Google Scholar 

  • Robertson MD, Ovenden JR, Barker SC (2007) Identification of small juvenile scombrids from northwest tropical Australia using mitochondrial DNA cytochrome b sequences. Ichthyol Res 54:246–252. doi:10.1007/s10228-007-0397-z

    Article  Google Scholar 

  • Romanov EV, Potier M, Anderson RC, Quod JP, Ménard F, Sattar SA, Hogarth P (2015) Stranding and mortality of pelagic crustaceans in the western Indian Ocean. J Mar Biol Assoc UK 95:1677–1684. doi:10.1017/S002531541500096X

    Article  Google Scholar 

  • Rouyer T, Fromentin J-M, Stenseth NC (2010) Environmental noise affects the fluctuations of Atlantic large pelagics. Prog Oceanogr 86:267–275. doi:10.1016/j.pocean.2010.04.025

    Article  Google Scholar 

  • Sabarros PS, Ménard F, Lévénez J-J, Tew-Kai E, Ternon J-F (2009) Mesoscale eddies influence distribution and aggregation patterns of micronekton in the Mozambique Channel. Mar Ecol Prog Ser 395:101–107. doi:10.3354/meps08087

    Article  Google Scholar 

  • Sabatés A, Olivar MP, Salat J, Palomera I, Alemany F (2007) Physical and biological processes controlling the distribution of fish larvae in the NW Mediterranean. Prog Oceanogr 74:355–376. doi:10.1016/j.pocean.2007.04.017

    Article  Google Scholar 

  • Sardenne F, Dortel E, Le Croizier G, Million J, Labonne M, Leroy B, Bodin N, Chassot E (2015) Determining the age of tropical tunas in the Indian Ocean from otolith microstructures. Fish Res 163:44–57. doi:10.1016/j.fishres.2014.03.008

    Article  Google Scholar 

  • Sardenne F, Bodin N, Chassot E, Amiel A, Fouché E, Degroote M, Hollanda S, Pethybridge H, Lebreton B, Guillou G, Ménard F (2016) Trophic niches of sympatric tropical tuna in the Western Indian Ocean inferred by stable isotopes and neutral fatty acids. Prog Oceanogr 146:75–88. doi:10.1016/j.pocean.2016.06.001

    Article  Google Scholar 

  • Schaefer KM (1996) Spawning time, frequency, and batch fecundity of yellowfin tuna, Thunnus albacares, near Clipperton. Fish Bull 94:98–113

    Google Scholar 

  • Schaefer KM (1998) Reproductive biology of yellowfin tuna (Thunnus albacares) in the eastern Pacific Ocean. Int Am Tropical Tuna Commis 21(205):221

    Google Scholar 

  • Schaefer KM (2001) Reproductive biology of tunas. Tuna Physiol Ecol Evol 19:225

    Article  Google Scholar 

  • Schaefer KM, Fuller DW, Block BA (2007) Movements, behavior, and habitat utilization of yellowfin tuna (Thunnus albacares) in the northeastern Pacific Ocean, ascertained through archival tag data. Mar Biol 152:503–525. doi:10.1007/s00227-007-0689-x

    Article  Google Scholar 

  • Schaefer KM, Fuller DW, Block BA (2009) Vertical movements and habitat utilization of skipjack (Katsuwonus pelamis), yellowfin (Thunnus albacares), and bigeye (Thunnus obesus) tunas in the equatorial eastern Pacific Ocean, ascertained through archival tag data. In: Nielsen JL, Arrizabalaga H, Fragoso N, Hobday A, Lutcavage M, Sibert J (eds) Tagging and tracking of marine animals with electronic devices. Reviews: methods and technologies in fish biology and fisheries, vol 9. Springer, pp 121–144

  • Schaefer KM, Fuller DW, Block BA (2011) Movements, behavior, and habitat utilization of yellowfin tuna (Thunnus albacares) in the Pacific Ocean off Baja California, Mexico, determined from archival tag data analyses, including unscented Kalman filtering. Fish Res 112:22–37. doi:10.1016/j.fishres.2011.08.006

    Article  Google Scholar 

  • Scoles DR, Graves JE (1993) Genetic-analysis of the population-structure of yellowfin tuna, Thunnus albacares, from the pacific-ocean. Fish Bull 91:690–698

    Google Scholar 

  • Sharp GD (1978) Behavioral and physiological properties of tunas and their effects on vulnerability to fishing gear. In: Sharp GD, Dizon AE (eds) The physiological ecology of tunas. Academic Press, New York, pp 397–449

    Chapter  Google Scholar 

  • Sharp GD, Vlyman, WJ (1978) The relation between heat generation, conservation, and the swimming energetics of tunas. In: Sharp GD, Dizon AE (eds) The physiological ecology of tunas. Academic Press, NewYork, pp 213–232

    Chapter  Google Scholar 

  • Shingu C, Tomlinson PK, Peterson CL (1974) A review of the Japanese longline fishery for tunas and billfishes in the eastern Pacific Ocean, 1967–1970. Inter Am Trop Tuna Commis Bull 16:65–230

    Google Scholar 

  • Shuford RL, Dean JM, Stéquert B, Morize E (2007) Age and growth of yellowfin tuna in the Atlantic Ocean. Collect Vol Sci Pap ICCAT 60:330–341

    Google Scholar 

  • Sibert J, Hampton J (2003) Mobility of tropical tunas and the implications for fisheries management. Mar Policy 27:87–95. doi:10.1016/S0308-597X(02)00057-X

    Article  Google Scholar 

  • Soares RX, Bertollo LAC, da Costa GWWF, Molina WF (2013) Karyotype stasis in four Atlantic Scombridae fishes: mapping of classic and dual-color FISH markers on chromosomes. Fish Sci 79:177–183. doi:10.1007/s12562-013-0602-0

    Article  CAS  Google Scholar 

  • Stéquert B, Panfili J, Dean JM (1996) Age and growth of yellowfin tuna, Thunnus albacares, from the western Indian Ocean, based on otolith microstructure. Oceanogr Lit Rev 12:1275

    Google Scholar 

  • Stéquert B, Rodriguez JN, Cuisset B, Le Menn F (2001) Gonadosomatic index and seasonal variations of plasma sex steroids in skipjack tuna (Katsuwonus pelamis) and yellowfin tuna (Thunnus albacares) from the western Indian Ocean. Aquat Living Resour 14:313–318. doi:10.1016/S0990-7440(01)01126-3

    Article  Google Scholar 

  • Stevens ED, Carey FG (1981) One why of the warmth of warm-bodied fish. Am J Physiol Regul Integr Comp Physiol 240:R151–R155

    CAS  Google Scholar 

  • Suda A, Schaefer MB (1965) General review of the Japanese tuna long-line fishery in the eastern tropical Pacific Ocean 1956–1962. Inter Am Trop Tuna Commis Bull 9:305–462

    Google Scholar 

  • Sun CL, Wang WR, Yeh S (2005) Reproductive biology of yellowfin tuna in the central and western Pacific Ocean. Working paper BI-WP-1, 1st Scientific Committee meeting of the Western and Central Pacific Fisheries Commission. Accessed 2012 Sep 27. www.wcpfc.int/meetings/2006/1st-regular-session

  • Sund PN, Blackburn M, Williams F (1981) Tunas and their environment in the Pacific Ocean: a review. Ocean Mar Biol Ann Rev 19:443–512

    Google Scholar 

  • Suzuki A (1962) On the blood types of yellowfin and bigeye tuna. Am Nat 96:239–246

    Article  Google Scholar 

  • Tidd AN, Reid C, Pilling GM, Harley SJ (2016) Estimating productivity, technical and efficiency changes in the Western Pacific purse-seine fleets. ICES J Mar Sci J Cons fsv262. doi:10.1093/icesjms/fsv262

  • Timochina OI, Romanov EV (1991) Notes on reproduction biology of yellowfin tuna in the Western Indian Ocean. Document 91/08, IPTP workshop on stock assessment of yellowfin tuna

  • Trippel EA (1999) Estimation of stock reproductive potential: history and challenges for Canadian Atlantic gadoid stock assessments. J Northwest Atl Fish Sci 25:61–82

    Article  Google Scholar 

  • Viñas J, Tudela S (2009) A Validated methodology for genetic identification of Tuna Species (Genus Thunnus). PLoS ONE 4:e7606. doi:10.1371/journal.pone.0007606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Viñas J, Gordoa A, Fernández-Cebrián R, Pla C, Vahdet Ü, Araguas RM (2011) Facts and uncertainties about the genetic population structure of Atlantic bluefin tuna (Thunnus thynnus) in the Mediterranean. Implications for fishery management. Rev Fish Biol Fish 21:527–541. doi:10.1007/s11160-010-9174-6

    Article  Google Scholar 

  • von Bertalanffy L (1938) A quantitative theory of organic growth. Hum Biol 10:181–213

    Google Scholar 

  • Walters C (2003) Folly and fantasy in the analysis of spatial catch rate data. Can J Fish Aquat Sci 60:1433–1436. doi:10.1139/f03-152

    Article  Google Scholar 

  • Wang S, Meyer E, McKay JK, Matz MV (2012) 2b-RAD: a simple and flexible method for genome-wide genotyping. Nat Methods 9:808–810. doi:10.1038/nmeth.2023

    Article  CAS  PubMed  Google Scholar 

  • Waples RS (1998) Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. J Hered 89:438–450. doi:10.1093/jhered/89.5.438

    Article  Google Scholar 

  • Ward RD (2000) Genetics in fisheries management. Hydrobiologia 420:191–201. doi:10.1023/A:1003928327503

    Article  CAS  Google Scholar 

  • Ward RD, Elliott NG, Grewe PM, Smolenski AJ (1994) Allozyme and mitochondrial DNA variation in yellowfin tuna (Thunnus albacares) from the Pacific Ocean. Mar Biol 118:531–539. doi:10.1007/BF00347499

    Article  CAS  Google Scholar 

  • Ward RD, Elliot NG, Innes BH, Smolenski AJ, Grewe PM (1997) Global population structure of yellowfin tuna, Thunnus albacares, inferred from allozyme and mitochondrial DNA variation. Fish Bull 95:566–575

    Google Scholar 

  • Westneat M, Wainwright SA (2001) Mechanical design for swimming: muscle, tendon, and bone. In: Block B, Stevens ED (eds) Tuna: physiology, ecology, and evolution. Academic Press, San Diego, pp 271–311. doi:10.1016/S1546-5098(01)19008-4

  • Wexler JB, Chow S, Wakabayashi T, Nohara K, Margulies D (2007) Temporal variation in growth of yellowfin tuna (Thunnus albacares) larvae in the Panama Bight, 1990. Fish Bull 105:1–18

    Google Scholar 

  • Wexler JB, Margulies D, Scholey VP (2011) Temperature and dissolved oxygen requirements for survival of yellowfin tuna, Thunnus albacares, larvae. J Exp Mar Biol Ecol 404:63–72. doi:10.1016/j.jembe.2011.05.002

    Article  Google Scholar 

  • Wild A (1994) A review of the biology and fisheries for yellowfin tuna, Thunnus albacares, in the eastern Pacific Ocean. FAO Fish. Tech. Pap. FAO

  • Wu GCC, Chiang H-C, Chou Y-W, Wong Z-R, Hsu C-C, Chen C-Y, Yang H-Y (2010) Phylogeography of yellowfin tuna (Thunnus albacares) in the Western Pacific and the Western Indian Oceans inferred from mitochondrial DNA. Fish Res 105:248–253. doi:10.1016/j.fishres.2010.03.015

    Article  Google Scholar 

  • Yabuta Y, Yukinawa M, Warashina Y (1960) Growth and age of yellowfin tuna-II. Age determination (scale method). Rep Nankai Reg Fish Res Lab 12:63–74

    Google Scholar 

  • Yang RT, Nose Y, Hiyama Y (1969) A comparative study on the age and growth of yellowfin tunas from the Pacific and Atlantic Oceans. Bull Far Seas Fish Res Lab 2:1–21

    Google Scholar 

  • Young JW, Bradford R, Lamb TD, Clementson LA, Kloser R, Galea H (2001) Yellowfin tuna (Thunnus albacares) aggregations along the shelf break off south-eastern Australia: links between inshore and offshore processes. Mar Freshw Res 52:463–474. doi:10.1071/MF99168

    Article  Google Scholar 

  • Young JW, Olson RJ, Ménard F, Kuhnert PM, Duffy LM, Allain V, Logan JM, Lorrain A, Somes CJ, Graham B et al (2015) Setting the stage for a global-scale trophic analysis of marine top predators: a multi-workshop review. Rev Fish Biol Fish 25:261–272. doi:10.1007/s11160-014-9368-4

    Article  Google Scholar 

  • Zagaglia CR, Lorenzzetti JA, Stech JL (2004) Remote sensing data and longline catches of yellowfin tuna (Thunnus albacares) in the equatorial Atlantic. Remote Sens Environ 93:267–281. doi:10.1016/j.rse.2004.07.015

    Article  Google Scholar 

  • Zhu G, Xu L, Zhou Y, Song L (2008) Reproductive biology of yellowfin tuna T. albacares in the west-central Indian Ocean. J Ocean Univ China 7:327–332. doi:10.1007/s11802-008-0327-3

    Article  Google Scholar 

  • Zudaire I, Murua H, Grande M, Korta M, Arrizabalaga H, Areso JJ, Delgado-Molina A (2013a) Fecundity regulation strategy of the yellowfin tuna (Thunnus albacares) in the Western Indian Ocean. Fish Res 138:80–88. doi:10.1016/j.fishres.2012.07.022

    Article  Google Scholar 

  • Zudaire I, Murua H, Grande M, Bodin N (2013b) Reproductive potential of yellowfin tuna (Thunnus albacares) in the western Indian Ocean. Fish Bull 111:252–264. doi:10.7755/FB.111.3.4

    Article  Google Scholar 

  • Zudaire I, Murua H, Grande M, Pernet F, Bodin N (2014) Accumulation and mobilization of lipids in relation to reproduction of yellowfin tuna (Thunnus albacares) in the Western Indian Ocean. Fish Res 160:50–59. doi:10.1016/j.fishres.2013.12.010

    Article  Google Scholar 

  • Zudaire I, Murua H, Grande M, Goñi N, Potier M, Ménard F, Chassot E, Bodin N (2015) Variations in the diet and stable isotope ratios during the ovarian development of female yellowfin tuna (Thunnus albacares) in the Western Indian Ocean. Mar Biol 162:2363–2377. doi:10.1007/s00227-015-2763-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Nick Vogel and Carolina Minte-Vera from IATTC, Peter Williams and John Hampton from SPC, Carlos Palma from ICCAT and James Geehan and David Wilson from IOTC for providing information on tuna fisheries data and data from stock assessment models. We are also grateful to all past and present staff involved in the collection and management of tuna fisheries data around the world. The contribution of Julien Barde was instrumental in managing the fisheries data used in the present analysis. Stefano Mariani and Victor Restrepo made useful comments on an earlier version of the manuscript. We are grateful to Peter Grewe, Peta Hill and Manuel Romeo for their help in the analysis of our microsatellite data. We finally thank Richard Brill and an anonymous reviewer for providing constructive feedbacks that greatly improved the manuscript. This paper is contribution no. 799 from AZTI-Tecnalia (Marine Research Division). NB and EC acknowledge support from the French National Research Agency through the EMOTION project (ANR 11 JSV7 007 01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Pecoraro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pecoraro, C., Zudaire, I., Bodin, N. et al. Putting all the pieces together: integrating current knowledge of the biology, ecology, fisheries status, stock structure and management of yellowfin tuna (Thunnus albacares). Rev Fish Biol Fisheries 27, 811–841 (2017). https://doi.org/10.1007/s11160-016-9460-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11160-016-9460-z

Keywords

Navigation