Skip to main content
Log in

A review: microbiologically influenced corrosion and the effect of cathodic polarization on typical bacteria

  • review paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Microbiologically influenced corrosion is a serious type of corrosion as approximately 20% of the total economic losses. Sulfate reducing bacteria and Iron oxidizing bacteria are one of the typical representatives of the anaerobic and aerobic bacteria, which are ubiquitous in natural environments and corrode steel structures. Cathodic polarization has been recognized as an effective method for preventing steels from microbial corrosion. Although cathodic polarization method has been widely studied, the specific properties of cathodic current that influences the bacterial removal and inactivation remained largely unclear. This review is to show the main effects of Sulfate reducing bacteria and Iron oxidizing bacteria on metal decay as well as the inhibition mechanism of cathodic polarization in the study of bio-corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbas FMA, Bhola R, Spear JR, Olson DL, Mishra B (2013) Electrochemical characterization of microbiologically influenced corrosion on linepipe steel exposed to facultative anaerobic desulfovibrio sp. Int J Electrochem Sci 8:859–871

    Google Scholar 

  • Agwa OK, Iyalla D, Abu GO (2017) Inhibition of bio corrosion of steel coupon by Sulphate reducing bacteria and Iron oxidizing bacteria using Aloe Vera (Aloe barbadensis) extracts. J Appl Sci Environ Manage 21:833–838

    Google Scholar 

  • Alabbas FM, Williamson C, Bhola SM, Spear JR, Olson DL, Mishra B et al (2013) Influence of sulfate reducing bacterial biofilm on corrosion behavior of low-alloy, high-strength steel (API-5L X80). Int Biodeterior Biodegradation 78:34–42

    Article  CAS  Google Scholar 

  • An CJ, He YL, Huang GH, Yang SC (2010) Degradation of hexahydro-1,3,5-trinitro-1,3, 5-triazine (RDX) by anaerobic mesophilic granular sludge from a UASB reactor. J Chem Technol Biotechnol 85:831–838

    Article  CAS  Google Scholar 

  • Ashassi-Sorkhabi H, Moradi-Haghighi M, Zarrini G, Javaherdashti R (2012) Corrosion behavior of carbon steel in the presence of two novel iron-oxidizing bacteria isolated from sewage treatment plants. Biodegradation 23:69–79

    Article  CAS  Google Scholar 

  • Babić R, Metikoš-Huković M (1993) Oxygen reduction on stainless steel. J Appl Electrochem 23:352–357

    Article  Google Scholar 

  • Beech IB, Sunner J (2004) Biocorrosion: towards understanding interactions between biofilms and metals. Curr Opin Biotechnol 15:181–186

    Article  CAS  Google Scholar 

  • Boopathy R, Daniels L (1991) Effect of pH on anaerobic mild steel corrosion by methanogenic bacteria. Appl Environ Microbiol 57:2104–2108

    CAS  Google Scholar 

  • Borden AJVD, Mei HCVD, Busscher HJ (2004) Electric-current-induced detachment of staphylococcus epidermidis strains from surgical stainless steel. J Biomed Mater Res B Appl Biomater 68B:160–164

    Article  CAS  Google Scholar 

  • Bos R, Mei HCVD, Busscher HJ (1999) Physico-chemistry of initial microbial adhesion interactions-its mechanisms and methods for study. FEMS Microbiol Rev 23:179–230

    Article  CAS  Google Scholar 

  • Busalmen JP, de Sanchez SR (2001) Adhesion of pseudomonas fluorescens (ATCC 17552) to nonpolarized and polarized thin films of gold. Appl Environ Microbiol 67:3188–3194

    Article  CAS  Google Scholar 

  • Busscher HJ, Weerkamp AH (1987) Specific and non-specific interactions in bacterial adhesion to solid substrata. FEMS Microbiol Lett 46:165–173

    Article  CAS  Google Scholar 

  • Castaneda H, Benetton XD (2008) Srb-biofilm influence in active corrosion sites formed at the steel-electrolyte interface when exposed to artificial seawater conditions. Corros Sci 50:1169–1183

    Article  CAS  Google Scholar 

  • Chen X, Wang G, Gao F, Wang Y, He C (2015) Effects of sulphate-reducing bacteria on crevice corrosion in X70 pipeline steel under disbonded coatings. Corros Sci 101:1–11

    Article  CAS  Google Scholar 

  • Chitra S, Anand B, Vaidiyanathan R, Balasubramanian V (2014) A review on microbial mediated corrosion on mild steel by inactivating the extracellular polysaccharide secreted by aerobic/anaerobic microorganism. Chem Sci Rev Lett 3:56–62

    CAS  Google Scholar 

  • Chongdar S, Gunasekaran G, Kumar P (2005) Corrosion inhibition of mild steel by aerobic biofilm. Electrochim Acta 50:4655–4665

    Article  CAS  Google Scholar 

  • Christodoulou C, Glass G, Webb J, Austin S, Goodier C (2010) Assessing the long term benefits of impressed current cathodic protection. Corros Sci 52:2671–2679

    Article  CAS  Google Scholar 

  • Costello JA (1974) Cathodic depolarization by sulphate-reducing bacteria. South African J Sci 70:202–204

    CAS  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappinscott HM (2003) Microbial biofilms. Annu Rev Microbiol 49:711–745

    Article  Google Scholar 

  • de Saravia SGG, de Mele MFL, Videla HA, Edyvean RGJ (1997) Bacterial biofilms on cathodically protected stainless steel. Biofouling 11:1–17

    Article  Google Scholar 

  • del Pozo JL, Rouse MS, Mandrekar JN, Steckelberg JM, Patel R (2009) The electricidal effect: reduction of staphylococcus and pseudomonas biofilms by prolonged exposure to low-intensity electrical current. Antimicrob Agents Chemother 53:41–45

    Article  CAS  Google Scholar 

  • Dhar HP, Howell DW, Bockris JOM (1982) The use of in situ electrochemical reduction of oxygen in the diminution of adsorbed bacteria on metals in seawater. J Electrochem Soc 129:2178–2182

    Article  CAS  Google Scholar 

  • Dong ZH, Liu T, Liu HF (2011) Influence of eps isolated from thermophilic sulphate-reducing bacteria on carbon steel corrosion. Biofouling 27:487–495

    Article  CAS  Google Scholar 

  • Duan J, Wu S, Zhang X, Huang G, Du M, Hou B (2008) Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater. Electrochim Acta 54:22–28

    Article  CAS  Google Scholar 

  • Eashwar M, Subramanian G, Palanichamy S, Rajagopal G, Madhu S, Kamaraj P (2009) Cathodic behaviour of stainless steel in coastal indian seawater: calcareous deposits overwhelm biofilms. Biofouling 25:191–201

    Article  CAS  Google Scholar 

  • Edyvean RGJ, Maines AD, Hutchinson CJ, Silk NJ, Evans LV (1992) Interactions between cathodic protection and bacterial settlement on steel in seawater. Int Biodeterior Biodegradation 29:251–271

    Article  CAS  Google Scholar 

  • Emerson D, Moyer C (1997) Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral ph. Appl Environ Microbiol 63:4784–4792

    CAS  Google Scholar 

  • Emerson D, Fleming EJ, McBeth JM (2010) Iron-oxidizing bacteria: an environmental and genomic perspective. Annu Rev Microbiol 64:561–583

    Article  CAS  Google Scholar 

  • Esquivel RG, Olivares GZ, Gayosso MJH, Trejo AG (2015) Cathodic protection of XL 52 steel under the influence of sulfate reducing bacteria. Mater Corros 62:61–67

    Article  CAS  Google Scholar 

  • Fatah MC, Ismail MC, Wahjoedi BA (2013) Effects of sulphide ion on corrosion behaviour of X52 steel in simulated solution containing metabolic products species: a study pertaining to microbiologically influenced corrosion (MIC). Corros Eng Sci Technol 48:211–220

    Article  CAS  Google Scholar 

  • Flemming HC (2002) Biofouling in water systems–cases, causes and countermeasures. Appl Microbiol Biotechnol 59:629–640

    Article  CAS  Google Scholar 

  • Grooters M, Harneit K, Wöllbrink M, Sand W, Stadler R, Fürbeth W (2007) Novel steel corrosion protection by microbial extracellular polymeric substances (EPS)–biofilm-induced corrosion inhibition. Adv Mater Res 20–21:375–378

    Article  Google Scholar 

  • Gu T, Zhao K, Nesic S (2009) A new mechanistic model for mic based on a biocatalytic cathodic sulfate reduction theory. Corrosion

  • Guan F, Zhai X, Duan J, Zhang J, Li K, Hou B (2017) Influence of sulfate-reducing bacteria on the corrosion behavior of 5052 aluminum alloy. Surf Coat Technol 316:171–179

    Article  CAS  Google Scholar 

  • Guezennec JG (1994) Cathodic protection and microbially induced corrosion. Int Biodeterior Biodegradation 34:275–288

    Article  CAS  Google Scholar 

  • Gurrappa I (2005) Cathodic protection of cooling water systems and selection of appropriate materials. J Mater Process Technol 166:256–267

    Article  CAS  Google Scholar 

  • Hamilton WA (2003) Microbially influenced corrosion as a model system for the study of metal microbe interactions: a unifying electron transfer hypothesis. Biofouling 19:65–76

    Article  CAS  Google Scholar 

  • Heckels JE, Blackett B, Everson JS, Ward ME (1976) The influence of surface charge on the attachment of neisseria gonorrhoeae to human cells. J Gen Microbiol 96:359

    Article  CAS  Google Scholar 

  • Herrera LK, Videla HA (2009) Role of iron-reducing bacteria in corrosion and protection of carbon steel. Int Biodeterior Biodegradation 63:891–895

    Article  CAS  Google Scholar 

  • Hong SH, Jeong J, Shim S, Kang H, Kwon S, Ahn KH et al (2008) Effect of electric currents on bacterial detachment and inactivation. Biotechnol Bioeng 100:379–386

    Article  CAS  Google Scholar 

  • Huttunen-Saarivirta E, Rajala P, Bomberg M, Carpén L (2017) Eis study on aerobic corrosion of copper in ground water: influence of micro-organisms. Electrochim Acta 240:163–174

    Article  CAS  Google Scholar 

  • Ilhan-Sungur E, Çotuk A (2010) Microbial corrosion of galvanized steel in a simulated recirculating cooling tower system. Corros Sci 52:161–171

    Article  CAS  Google Scholar 

  • Istanbullu O, Babauta J, Duc Nguyen H, Beyenal H (2012) Electrochemical biofilm control: mechanism of action. Biofouling 28:769–778

    Article  CAS  Google Scholar 

  • Javaherdashti R (1999) A review of some characteristics of mic caused by sulfate-reducing bacteria: past, present and future. Anti-Corrosion Methods Mater 46:173–180

    Article  CAS  Google Scholar 

  • Javaherdashti R (2011) Impact of sulphate-reducing bacteria on the performance of engineering materials. Appl Microbiol Biotechnol 91:1507–1517

    Article  CAS  Google Scholar 

  • Jia R, Yang D, Xu D, Gu T (2017a) Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing pseudomonas aeruginosa biofilm. Bioelectrochemistry 118:38–46

    Article  CAS  Google Scholar 

  • Jia R, Yang D, Xu J, Xu D, Gu T (2017b) Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing pseudomonas aeruginosa biofilm under organic carbon starvation. Corros Sci 127:1–9

    Article  CAS  Google Scholar 

  • Jia R, Tan JL, Jin P, Blackwood DJ, Xu D, Gu T (2018) Effects of biogenic H2S on the microbiologically influenced corrosion of C1018 carbon steel by sulfate reducing desulfovibrio vulgaris biofilm. Corros Sci 130:1–11

    Article  CAS  Google Scholar 

  • Jin J, Guan Y (2014) The mutual co-regulation of extracellular polymeric substances and iron ions in biocorrosion of cast iron pipes. Bioresour Technol 169:387–394

    Article  CAS  Google Scholar 

  • Jin J, Wu G, Guan Y (2015) Effect of bacterial communities on the formation of cast iron corrosion tubercles in reclaimed water. Water Res 71:207–218

    Article  CAS  Google Scholar 

  • Jogdeo P, Chai R, Shuyang S, Saballus M, Constancias F, Wijesinghe SL et al (2017) Onset of microbial influenced corrosion (MIC) in stainless steel exposed to mixed species biofilms from equatorial seawater. J Electrochem Soc 164:C532–C538

    Article  CAS  Google Scholar 

  • Kuehr VW, Vlugt VD (1934) De grafiteering van gietijzer als electrobiochemich process in anaerobe gronden

  • Lee W, Lewandowski Z, Nielsen PH, Hamilton WA (1995) Role of sulfate-reducing bacteria in corrosion of mild steel: a review. Biofouling 8:165–194

    Article  CAS  Google Scholar 

  • Li SY, Jeon KS, Kang TY, Kho YT, Kim YG (2001) Microbiologically influenced corrosion of carbon steel exposed to anaerobic soil. Corrosion 57:815–828

    Article  CAS  Google Scholar 

  • Li H, Xu D, Li Y, Feng H, Liu Z, Li X et al (2015) Extracellular electron transfer is a bottleneck in the microbiologically influenced corrosion of C1018 carbon steel by the biofilm of sulfate-reducing bacterium desulfovibrio vulgaris. PLoS ONE 10:e0136183

    Article  CAS  Google Scholar 

  • Little B, Ray R (2002) A perspective on corrosion inhibition by biofilms. Corrosion -Houston Tx- 58:424–428

    Article  CAS  Google Scholar 

  • Little B, Wagner P, Mansfeld F (1992) Microbiologically influenced corrosion of metals and alloys. Electrochim Acta 37:2185–2194

    Article  CAS  Google Scholar 

  • Little BJ, Wagner PA, Hart KR, Ray RI (1997) Spatial relationships between bacteria and localized corrosion. Spatial Relationships Between Bacteria & Localized Corrosion

  • Liu T, Cheng YF (2017) The influence of cathodic protection potential on the biofilm formation and corrosion behaviour of an x70 steel pipeline in sulfate reducing bacteria media. J Alloy Compd 729:180–188

    Article  CAS  Google Scholar 

  • Liu H, Frank Cheng Y (2017) Mechanism of microbiologically influenced corrosion of X52 pipeline steel in a wet soil containing sulfate-reduced bacteria. Electrochim Acta 253:368–378

    Article  CAS  Google Scholar 

  • Liu H, Zheng B, Xu D, Fu C, Luo Y (2014) Effect of sulfate-reducing bacteria and iron-oxidizing bacteria on the rate of corrosion of an aluminum alloy in a central air-conditioning cooling water system. Ind Eng Chem Res 53:7840–7846

    Article  CAS  Google Scholar 

  • Liu H, Fu C, Gu T, Zhang G, Lv Y, Wang H et al (2015) Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water. Corros Sci 100:484–495

    Article  CAS  Google Scholar 

  • Liu H, Gu T, Zhang G, Cheng Y, Wang H, Liu H (2016a) The effect of magneticfield on biomineralization and corrosion behavior of carbon steel induced by iron-oxidizing bacteria. Corros Sci 102:93–102

    Article  CAS  Google Scholar 

  • Liu H, Gu T, Zhang G, Wang W, Dong S, Cheng Y et al (2016b) Corrosion inhibition of carbon steel in CO2-containing oilfield produced water in the presence of iron-oxidizing bacteria and inhibitors. Corros Sci 105:149–160

    Article  CAS  Google Scholar 

  • Liu H, Gu T, Asif M, Zhang G, Liu H (2017) The corrosion behavior and mechanism of carbon steel induced by extracellular polymeric substances of iron-oxidizing bacteria. Corros Sci 114:102–111

    Article  CAS  Google Scholar 

  • Maeda T, Negishi A, Komoto H, Oshima Y, Kamimura K, Sugio T (1999) Isolation of iron-oxidizing bacteria from corroded concretes of sewage treatment plants. J Biosci Bioeng 88:300–305

    Article  CAS  Google Scholar 

  • McBeth JM, Emerson D (2016) In situ microbial community succession on mild steel in estuarine and marine environments: exploring the role of iron-oxidizing bacteria. Front Microbiol 7:767–780

    Article  Google Scholar 

  • McBeth JM, Little BJ, Ray RI, Farrar KM, Emerson D (2011) Neutrophilic iron-oxidizing “zetaproteobacteria” and mild steel corrosion in nearshore marine environments. Appl Environ Microbiol 77:1405–1412

    Article  CAS  Google Scholar 

  • Mehanna M, Basseguy R, Delia ML, Bergel A (2009) Role of direct microbial electron transfer in corrosion of steels. Electrochem Commun 11:568–571

    Article  CAS  Google Scholar 

  • Moon KM, Cho HR, Lee MH, Shin SK, Koh SC (2007) Electrochemical analysis of the microbiologically influenced corrosion of steels by sulfate-reducing bacteria. Met Mater Int 13:211–216

    Article  CAS  Google Scholar 

  • Moradi M, Duan J, Ashassi-Sorkhabi H, Luan X (2011) De-alloying of 316 stainless steel in the presence of a mixture of metal-oxidizing bacteria. Corros Sci 53:4282–4290

    Article  CAS  Google Scholar 

  • Nekoksa G, Gutherman B (1991) Cathodic protection criteria for controlling microbially influenced corrosion in power plants

  • Okabe S, Odagiri M, Ito T, Satoh H (2007) Succession of sulfur-oxidizing bacteria in the microbial community on corroding concrete in sewer systems. Appl Environ Microbiol 73:971–980

    Article  CAS  Google Scholar 

  • Olivares G, Mejia G, Caloca G, Lopez I, Dabur F, Ulloa-Ochoa C, et al (2003) Sulfate reducing bacteria influence on the cathodic protection of pipelines that transport hydrocarbons. Corrosion

  • Pérez M, Gervasi CA, Armas R, Stupak ME, Di Sarli AR (2009) The influence of cathodic currents on biofouling attachment to painted metals. Biofouling 8:27–34

    Article  Google Scholar 

  • Poortinga AT, Smit J, Mei HCVD, Busscher HJ (2001) Electric field induced desorption of bacteria from a conditioning film covered substratum. Biotechnol Bioeng 76:395–399

    Article  CAS  Google Scholar 

  • Pourbaix M (1996) Atlas of electrochemical equilibria in aqueous solutions. NACE International, Houston

    Google Scholar 

  • Quan XC, Tang H, Xiong WC, Yang ZF (2010) Bioaugmentation of aerobic sludge granules with a plasmid donor strain for enhanced degradation of 2,4-dichlorophenoxyacetic acid. J Hazard Mater 179:1136–1142

    Article  CAS  Google Scholar 

  • Rao TS, Sairam TN, Viswanathan B, Nair KVK (2000) Carbon steel corrosion by iron oxidising and sulphate reducing bacteria in a freshwater cooling system. Corros Sci 42:1417–1431

    Article  CAS  Google Scholar 

  • Reguera G, Mccarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101

    Article  CAS  Google Scholar 

  • Romero MD, Duque Z, RodríGuez L, RincóN OD, PéRez O, Araujo I (2005) A study of microbiologically induced corrosion by sulfate-reducing bacteria on carbon steel using hydrogen permeation. Corrosion 61:68–75

    Article  Google Scholar 

  • Rosenberger S, Kraume M (2002) Filterability of activated sludge in membrane reactors. Desalination 146:373–379

    Article  CAS  Google Scholar 

  • Sand W, Gehrke T (2003) Microbially influenced corrosion of steel in aqueous environments. Rev Environ Sci Biotechnol 2:169–176

    Article  CAS  Google Scholar 

  • Scotto V, Cintio RD, Marcenaro G (1985) The influence of marine aerobic microbial film on stainless steel corrosion behaviour. Corros Sci 25:185–194

    Article  CAS  Google Scholar 

  • Sheng X, Ting Y-P, Pehkonen SO (2007) The influence of sulphate-reducing bacteria biofilm on the corrosion of stainless steel aisi 316. Corros Sci 49:2159–2176

    Article  CAS  Google Scholar 

  • Sherar BWA, Power IM, Keech PG, Mitlin S, Southam G, Shoesmith DW (2011) Characterizing the effect of carbon steel exposure in sulfide containing solutions to microbially induced corrosion. Corros Sci 53:955–960

    Article  CAS  Google Scholar 

  • Shirtliff ME, Bargmeyer A, Camper AK (2005) Assessment of the ability of the bioelectric effect to eliminate mixed-species biofilms. Appl Environ Microbiol 71:6379

    Article  CAS  Google Scholar 

  • Stadler R, Wei L, Fürbeth W, Grooters M, Kuklinski A (2010) Influence of bacterial exopolymers on cell adhesion of desulfovibrio vulgaris on high alloyed steel: corrosion inhibition by extracellular polymeric substances (EPS). Mater Corros 61:1008–1016

    Article  CAS  Google Scholar 

  • Starosvetsky J, Starosvetsky D, Pokroy B, Hilel T, Armon R (2008) Electrochemical behaviour of stainless steels in media containing iron-oxidizing bacteria (IOB) by corrosion process modeling. Corros Sci 50:540–547

    Article  CAS  Google Scholar 

  • Sun W, Liu G, Wang L, Li Y (2012) A mathematical model for modeling the formation of calcareous deposits on cathodically protected steel in seawater. Electrochim Acta 78:597–608

    Article  CAS  Google Scholar 

  • Sung EH, Han JS, Ahn CM, Seo HJ, Kim CG (2011) Biological metal corrosion in saline systems by sulfur-reducing and iron-oxidizing bacteria. Water Qual Res J Can 46:321–331

    Article  CAS  Google Scholar 

  • Tiller AK, Booth GH (1962) Polarization studies of mild steel in cultures of sulphate-reducing bacteria. Part 3. halophilic organisms. Trans Faraday Soc 56:1689–1696

    Google Scholar 

  • van der Borden AJ, van der Werf H, van der Mei HC, Busscher HJ (2004) Electric current-induced detachment of staphylococcus epidermidis biofilms from surgical stainless steel. Appl Environ Microbiol 70:6871–6874

    Article  CAS  Google Scholar 

  • Vastra M, Salvin P, Roos C (2016) Mic of carbon steel in amazonian environment: electrochemical, biological and surface analyses. Int Biodeterior Biodegradation 112:98–107

    Article  CAS  Google Scholar 

  • Venzlaff H, Enning D, Srinivasan J, Mayrhofer KJJ, Hassel AW, Widdel F et al (2013) Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria. Corros Sci 66:88–96

    Article  CAS  Google Scholar 

  • Videla HA, Herrera LK (2005) Microbiologically influenced corrosion: looking to the future. Int Microbiol 8:169–180

    CAS  Google Scholar 

  • Wang W, Li X, Wang J, Xu H, Wu J (2004) Influence of biofilms growth on corrosion potential of metals immersed in seawater. Mater Corros 55:30–35

    Article  CAS  Google Scholar 

  • Wang H, Ju LK, Castaneda H, Cheng G, Newby BMZ (2014) Corrosion of carbon steel C1010 in the presence of iron oxidizing bacteria acidithiobacillus ferrooxidans. Corros Sci 89:250–257

    Article  CAS  Google Scholar 

  • Wilson WW, Wade MM, Holman SC, Champlin FR (2001) Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements. J Microbiol Methods 43:153–164

    Article  CAS  Google Scholar 

  • Wu T, Yan M, Zeng D, Xu J, Sun C, Yu C et al (2015) Stress corrosion cracking of X80 steel in the presence of sulfate-reducing bacteria. J Mater Sci Technol 31:413–422

    Article  CAS  Google Scholar 

  • Xin B, Zhang D, Zhang X, Xia Y, Wu F, Chen S et al (2009) Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria. Bioresour Technol 100:6163–6169

    Article  CAS  Google Scholar 

  • Xu D, Gu T (2014) Carbon source starvation triggered more aggressive corrosion against carbon steel by the desulfovibrio vulgaris biofilm. Int Biodeterior Biodegradation 91:74–81

    Article  CAS  Google Scholar 

  • Xu C, Zhang Y, Cheng G, Zhu W (2007) Localized corrosion behavior of 316L stainless steel in the presence of sulfate-reducing and iron-oxidizing bacteria. Mater Sci Eng A 443:235–241

    Article  CAS  Google Scholar 

  • Xu C, Zhang Y, Cheng G, Zhu W (2008) Pitting corrosion behavior of 316L stainless steel in the media of sulphate-reducing and iron-oxidizing bacteria. Mater Charact 59:245–255

    Article  CAS  Google Scholar 

  • Xu D, Li Y, Gu T (2012) A synergistic d-tyrosine and tetrakis hydroxymethyl phosphonium sulfate biocide combination for the mitigation of an srb biofilm. World J Microbiol Biotechnol 28:3067–3074

    Article  CAS  Google Scholar 

  • Xu D, Li Y, Gu T (2016) Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria. Bioelectrochemistry 110:52–58

    Article  CAS  Google Scholar 

  • Yu L, Duan J, Du X, Huang Y, Hou B (2013) Accelerated anaerobic corrosion of electroactive sulfate-reducing bacteria by electrochemical impedance spectroscopy and chronoamperometry. Electrochem Commun 26:101–104

    Article  CAS  Google Scholar 

  • Yuan SJ, Pehkonen SO (2007) Microbiologically influenced corrosion of 304 stainless steel by aerobic pseudomonas ncimb 2021 bacteria: afm and xps study. Colloids Surf B 59:87–99

    Article  CAS  Google Scholar 

  • Zhang P, Xu D, Li Y, Yang K, Gu T (2015) Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the desulfovibrio vulgaris biofilm. Bioelectrochemistry 101:14–21

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by National Natural Science Foundation of China (No. 41576076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Du.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, M., Du, M. A review: microbiologically influenced corrosion and the effect of cathodic polarization on typical bacteria. Rev Environ Sci Biotechnol 17, 431–446 (2018). https://doi.org/10.1007/s11157-018-9473-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-018-9473-2

Keywords

Navigation