Skip to main content

Advertisement

Log in

Versatility and commercial status of microbial keratinases: a review

  • review paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

The world’s increasing population and shortage of food and feed is creating an urgently for us to look for new protein sources from waste products like keratinous waste. Poor management of these wastes has made them one of the major recalcitrant pollutants in nature. Microbial keratinases offers an economic and eco-friendly alternative for degrading and recycling keratinous waste into valuable byproducts. Diverse groups of microorganisms viz., bacteria, fungi and actinomycetes have the ability to degrade recalcitrant keratin by producing keratinase enzyme. Microbial keratinases exhibits great diversity in its biochemical properties with respect to activity and stability in various pH and temperature ranges as well as in the range of recalcitrant proteins it degrades like those present in feathers, hairs, nails, hooves etc. Owing to diverse properties and multifarious biotechnological implications, keratinases can be considered as promising biocatalysts for preparation of animal nutrients, protein supplements, leather processing, fiber modification, detergent formulation, feather meal processing for feed and fertilizer, the pharmaceutical, cosmetic and biomedical industries, and waste management. This review article presents an overview of keratin structure and composition, mechanism of microbial keratinolysis, diversity of keratinolytic microorganisms, and their potential applications in various fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(Yamamura et al. 2002)

Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aboushwareb T, Eberli D, Ward C, Broda C, Holcomb J, Atala A, Van Dyke MA (2009) Keratin biomaterial gel hemostat derived from human hair: evaluation in a rabbit model of lethal liver injury. J Biomed Mater Res B90:45–54

    Google Scholar 

  • Abraham PK, Srinivas J, Venkateswarulu TC, Indira M, John babu D, Diwakar T, Vidya PK (2012) Investigation of the potential antibiofilm activities of plant extracts. Int J Pharm Pharm Sci 4:282–285

    Google Scholar 

  • Acda MN (2010) Waste chicken feather as reinforcement in cement-bonded composites. Philipp J Sci 139(2):161–166

    Google Scholar 

  • Adetunji CO, Makanjuola OR, Arowora KA, Afolayan SS, Adetunji JB (2012) Production and application of keratin-based organic fertilizer from microbially hydrolyzed feathers to cowpea (Vigna unguiculata). Int J Sci Eng Res 3(12):164–172

    Google Scholar 

  • Agrawal B, Dalal M (2015) Screening and characterization of keratinase enzyme obtained from keratin degrading microorganism isolated from Sanjan poultry waste dumping soil. Eur Acad Res 2(11):13986–13994

    Google Scholar 

  • Akhtar W, Edwards HGM (1997) Fourier-transform Raman spectroscopy of mammalian and avian keratinolytic biopolymers. Spectrochim Acta A Mol Biomol Spectrosc 53:81–90

    Google Scholar 

  • Allure N, Madhusudhan DN, Agsar D (2015) Detection of keratinolytic Actinobacteria and evaluation of bioprocess for production of alkaline keratinase. Int J Curr Microbiol Appl Sci 4(7):907–918

    Google Scholar 

  • Al-Musallam AA, Al-Zarban SS, Fasasi YA, Kroppenstedt RM, Stackebrandt E (2003) Amycolatopsis keratiniphila sp. nov., a novel keratinolytic soil actinomycete from Kuwait. Int J Syst Evol Microbiol 53:871–874

    Article  CAS  Google Scholar 

  • Al-Musallam A, Al-Gharabally D, Vadakkancheril N (2013) Biodegradation of keratin in mineral-based feather medium by thermophilic strains of a new Coprinopsis sp. Int Biodeterior Biodegradation 79:42–48. https://doi.org/10.1016/j.ibiod.2012.11.011

    Article  CAS  Google Scholar 

  • Al-Sane NA, Al-Musallam A, Onifade AA (2002) The isolation of keratin degrading microorganisms from Kuwait soils: production and characterization of their keratinases. Kuwait J Sci Eng 29:125–138

    CAS  Google Scholar 

  • Al-Zarban SS, Al-Musallam AA, Abbas IH, Fasasi YA (2002) Noteworthy salt loving actinomycetes from Kuwait. Kuwait J Sci Eng 29(1):99–109

    CAS  Google Scholar 

  • Anbu P, Gopinath SCB, Hilda A, Lakshmipriya T, Annadurai G (2007) Optimization of extracellular keratinase production by poultry farm isolate Scopulariopsis brevicaulis. Bioresour Technol 98:1298–1303

    Article  CAS  Google Scholar 

  • Anbu P, Hilda A, Sur HW, Hur BK, Jayanthi S (2008) Extracellular keratinase from Trichophyton sp. HA-2 isolated from feather dumping soil. Int Biodeterior Biodegradation 62:287–292

    Article  CAS  Google Scholar 

  • Anitha TS, Palanivelu P (2013) Purification and characterization of an extracellular keratinolytic protease from a new isolate of Aspergillus parasiticus. Protein Expr Purif 88:214–220. https://doi.org/10.1016/j.pep.2013.01.007

    Article  CAS  Google Scholar 

  • Apel PJ, Garrett JP, Sierpinski P, Ma J, Atala A, Smith TL, Koman LA, Van Dyke ME (2008) Peripheral nerve regeneration using a keratin-based scaffold: long-term functional and histological outcomes in a mouse model. J Hand Surg Am 33:1541–1547

    Article  Google Scholar 

  • Apodaca G, McKerrow JH (1989) Regulation of Trichophyton rubrum proteolytic activity. Infect Immun 57:3081–3090

    CAS  Google Scholar 

  • Awasthi R, Kuahwaha RKS (2011) Keratinase activity of some hyphomycetous fungi from dropped off chicken feathers. Int J Pharm Biol Sci Arch 2(6):1745–1750

    Google Scholar 

  • Balaji S, Kumar MS, Karthikeyan R, Kumar R, Kirubanandan S, Sridhar R, Sehgal PK (2008) Purification and characterization of an extracellular keratinase from a hornmeal-degrading Bacillus subtilis MTCC (9102). World J Microbiol Biotechnol 24:2741–2745

    Article  CAS  Google Scholar 

  • Balint B, Bagi Z, Rakhley G, Perei K, Kovacs KL (2005) Utilization of keratin containing biowaste to produce biohydrogen. Appl Microbiol Biotechnol 69:404–410

    Article  CAS  Google Scholar 

  • Bartelt-Hunt SL, Bartz JC (2013) Behavior of prions in the environment: implications for prion biology. PLoS Pathog 9(2):e1003113. https://doi.org/10.1371/journal.ppat.1003113

    Article  CAS  Google Scholar 

  • Benkiar A, Nadia Z, Badis A, Rebzani F, Soraya B, Rekik H, Naili B, Ferradji F, Bejar S, Jaouadi B (2013) Biochemical and molecular characterization of a thermo- and detergent stable alkaline serine keratinolytic protease from Bacillus circulans strain DZ100 for detergent formulations and feather-biodegradation process. Int Biodeterior Biodegradation 83:129–138. https://doi.org/10.1016/j.ibiod.2013.05.014

    Article  CAS  Google Scholar 

  • Bernal C, Vidal L, Valdivieso E, Coello N (2003) Keratinolytic activity of Kocuria rosea. World J Microbiol Biotechnol 19(3):255–261

    Article  CAS  Google Scholar 

  • Bertsch A, Coello N (2005) A biotechnological process for treatment and recycling poultry feathers as a feed ingredient. Bioresour Technol 96:1703–1708. https://doi.org/10.1016/j.biortech.2004.12.026

    Article  CAS  Google Scholar 

  • Bishmi A, Thatheyus J, Ramya D (2015) Biodegradation of poultry feathers using a novel bacterial isolate Pseudomonas aeruginosa. Int J Res Microbiol Biotechnol 1(1):25–30

    Google Scholar 

  • Block RJ (1951) Chemical classification of keratins. Ann NY Acad Sci 53:608–612

    Article  CAS  Google Scholar 

  • Boakye MAD, Rijal NP, Adhikari U, Bhattarai N (2015) Fabrication and characterization of electrospun PCL-MgO-keratin based composite nanofibers for biomedical applications. Materials 8:4080–4095

    Article  Google Scholar 

  • Boeckle B, Galunsky B, Mueller R (1995) Characterization of a keratinolytic serine proteinase from Streptomyces pactum DSM 40530. Appl Environ Microbiol 61(10):3705–3710

    CAS  Google Scholar 

  • Bohacz J (2017) Biodegradation of feather waste keratin by a keratinolytic soil fungus of the genus Chrysosporium and statistical optimization of feather mass loss. World J Microbiol Biotechnol 33(1):11–16

    Article  CAS  Google Scholar 

  • Bohacz J, Korniłłowicz-Kowalska T (2009) Changes in enzymatic activity in compost containing chicken feathers. Bioresour Technol 100:3604–3612. https://doi.org/10.1016/j.biortech.2009.02.042

    Article  CAS  Google Scholar 

  • Bouacem K, Bouanane-Darenfed A, Jaouadi NZ, Joseph M, Hacene H, Ollivier B, Fardeau ML, Bejar S, Jaouadi B (2016) Novel serine keratinase from Caldicoprobacter algeriensis exhibiting outstanding hide dehairing abilities. Int J Biol Macromol 86:321–328

    Article  CAS  Google Scholar 

  • Bragulla HH, Homberger DJ (2009) Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. J Anat 214:516–559. https://doi.org/10.1111/j.1469-7580.2009.01066.x

    Article  CAS  Google Scholar 

  • Braikova D, Vasileva-Tonkova E, Gushterova A, Nedkov P (2007) Degradation of keratin and collagen containing wastes by enzyme mixtures produced by newly isolated thermophylic actinomycetes. In: Bhattacharya SK (ed) Enzyme mixtures and complex biosynthesis. Landes Biosciences, Texas, pp 49–63

    Google Scholar 

  • Brandelli A (2008) Bacterial keratinases: useful enzymes for bioprocessing agroindustrial wastes and beyond. Food Bioprocess Technol 1:105–116. https://doi.org/10.1007/s11947-007-0025-y

    Article  Google Scholar 

  • Brandelli A, Daroit D, Riffel A (2010) Biochemical features of microbial keratinases and their production and applications. Appl Microbiol Biotechnol 85:1735–1750. https://doi.org/10.1007/s00253-009-2398-5

    Article  CAS  Google Scholar 

  • Bressollier P, Letourneau F, Urdaci M, Verneuil B (1999) Purification and characterization of a keratinolytic serine proteinase from Streptomyces albidoflavus. Appl Environ Microbiol 65:2570–2576

    CAS  Google Scholar 

  • Burtt EH (1979) Tips on wings and other things. In: Burtt EH (ed) The behavioral significance of color. Garland STMP Press, New York, pp 75–110

    Google Scholar 

  • Burtt EH Jr, Ichida JM (2004) Gloger’s rule, feather-degrading bacteria and color variation among song sparrows. Condor 106:681–686

    Article  Google Scholar 

  • Butler M, Johnson AS (2004) Are melanized feather barbs stronger? J Exp Biol 207:285–293

    Article  Google Scholar 

  • Cai C, Zheng X (2009) Medium optimization for keratinase production in hair substrate by a new Bacillus subtilis KD-N2 using response surface methodology. J Ind Microbiol Biotechnol 36:875–883

    Article  CAS  Google Scholar 

  • Cannan RK, Levy M (1950) The chemistry of amino acids and proteins. Annu Rev Biochem 19:125–148

    Article  CAS  Google Scholar 

  • Cao L, Tan H, Liu Y, Xa Xue, Zhou S (2008) Characterization of a new keratinolytic Trichoderma atroviride strain F6 that completely degrades native chicken feather. Lett Appl Microbiol 46:389–394. https://doi.org/10.1111/j.1472-765X.2008.02327.x

    Article  CAS  Google Scholar 

  • Cao ZJ, Lu D, Luo LS, Deng YX, Bian YG, Zhang XQ, Zhou MH (2012) Composition analysis and application of degradation products of whole feathers through a large scale of fermentation. Environ Sci Pollut Res 19:2690–2696. https://doi.org/10.1007/s11356-012-0763-x

    Article  CAS  Google Scholar 

  • Cascarosa E, Gea G, Arauzo J (2012) Thermochemical processing of meat and bone meal: a review. Renew Sustain Energy Rev 16:942–957. https://doi.org/10.1016/j.rser.2011.09.015

    Article  CAS  Google Scholar 

  • Cavello IA, Hours RA, Cavalitto SF (2012) Bioprocessing of “hair waste” by Paecilomyces lilacinus as a source of a bleach-stable, alkaline, and thermostable keratinase with potential application as a laundry detergent additive: characterization and wash performance analysis. Biotechnol Res Int 2012:369308. https://doi.org/10.1155/2012/369308

    Article  CAS  Google Scholar 

  • Cedrola SML, Melo ACN, Mazotto AM, Lins U, Zingali RB, Rosado AS, Peixoto RS, Vermelho AB (2012) Keratinases and sulfide from Bacillus subtilis SLC to recycle feather waste. World J Microbiol Biotechnol 28:259–1269

    Article  CAS  Google Scholar 

  • Chaudhari P, Chaudhari B, Chincholkar S (2013) Iron containing keratinolytic etalloprotease produced by Chryseobacterium gleum. Process Biochem 48:144–151. https://doi.org/10.1016/j.procbio.2012.11.009

    Article  CAS  Google Scholar 

  • Chikura T, Izumi N, Matsumoto S (1994) Manufacture of amino acid containing fertilizers. Jpn Kokai Tokkyo Koho JP 06:40 [786 [94 40,786] (C1.C05C11/00)]

    Google Scholar 

  • Chitte RR, Nalawade VK, Dey S (1999) Keratinolytic activity from the broth of a feather degrading thermophilic Sterptomyces thermoviolaceous strain SD8. Lett Appl Microbiol 28:131–136

    Article  CAS  Google Scholar 

  • Cho HJ (1983) Inactivation of the scrapie agent by pronase. Can J Comp Med 47:494–496

    CAS  Google Scholar 

  • Choi JM, Nelson PV (1996) Developing a slow release nitrogen fertilizer from organic sources using poultry feathers. J Am Soc Hortic Sci 121:639–643

    Google Scholar 

  • Correa APF, Daroit DJ, Brandelli A (2009) Characterization of a keratinase produced by Bacillus sp. P7 isolated from an Amazonian environment. Int Biodeterior Biodegradation. https://doi.org/10.1016/j.ibiod.2009.06.015

    Google Scholar 

  • Correa APF, Daroit DJ, Brandelli A (2010) Characterization of a keratinase produced by Bacillus sp. P7 isolated from an Amazonian environment. Int Biodeterior Biodegradation 64:1–6. https://doi.org/10.1016/j.ibiod.2009.06.015

    Article  CAS  Google Scholar 

  • Cortified MC, Robson A (1955) The amino acid composition of wool. Biochem J 59(1):62–68. https://doi.org/10.1042/bj0590062

    Article  Google Scholar 

  • Coward-Kelly G, Chang VS, Agbogbo FK, Holtzapple MT (2006) Lime treatment of keratinous materials for the generation of highly digestible animal feed: 1. Chicken feathers. Bioresour Technol 97:1337–1343. https://doi.org/10.1016/j.biortech.2005.05.021

    Article  CAS  Google Scholar 

  • Crookston RK (1984) The rotation effect: what causes it to boost yields? Crops Soils 36(6):12–14

    Google Scholar 

  • Dalev PG (1994) Utilization of waste feather from poultry slaughter for production of a protein concentrate. Bioresour Technol 48:265–267

    Article  CAS  Google Scholar 

  • Darah Nur-Diyana A, Nurul-Husna S, Jain K, Lim SH (2013) Microsporum fulvum IBRL SD3: as novel isolate for chicken feathers degradation. Appl Biochem Biotechnol 171:1900–1910

    Article  CAS  Google Scholar 

  • De Azeredo LAI, De Lima MB, Coelho RRR, Freire DMG (2006) Thermophilic protease production by Streptomyces sp. 594 in submerged and solid state fermentations using feather meal. J Appl Microbiol 100:641–647

    Article  CAS  Google Scholar 

  • De-Toni CH, Richter MF, Chagas JR, Henriques JAP, Termignoni C (2002) Purification and characterization of an alkaline serine endopeptidase from a feather-degrading Xanthomonas maltophila strain. Can J Microbiol 48:342–348

    Article  CAS  Google Scholar 

  • Ding S, Sun H (2009) Preparation method of cutin dispelling cosmetics and use method. Patent CN101396328

  • Duarte TR, Oliveira SS, Macrae ASML, Mazotto CAM, Souza EP, Melo ACN, Vermelho AB (2011) Increased expression of keratinase and other peptidases by Candida parapsilosis mutants. Braz J Med Biol Res 44:212–216

    Article  CAS  Google Scholar 

  • Edwards A, Jarvis D, Hopkins T, Pixley S, Bhattarai N (2015) Poly (ε-caprolactone)/keratin-based composite nanofibers for biomedical applications. J Biomed Mater Res B Appl Biomater 103B:21–30

    Article  CAS  Google Scholar 

  • Elhoula MB, Jaouadia NZ, Rekika H, Benmrada MO, Mechria S, Moujeheda E, Kourdalib S, El Hattabc M, Badisb A, Bejara Samir, Jaouadia B (2016) Biochemical and molecular characterization of new keratinoytic protease from Actinomadura viridilutea DZ50. Int J Biol Macromol 92:299–315

    Article  CAS  Google Scholar 

  • Encarna P, Elena FK (2011) Tape, in particular, adhesive tape, for the treatment of skin disorders comprising at least one hyperkeratosis inhibitor and/or at least one keratinolytic agent. Patent O2011050947

  • Esawy MA (2007) Isolation and partial characterization of extracellular keratinase from a novel mesophilic Streptomyces albus AZA. Res J Agric Biol Sci 3(6):808–817

    CAS  Google Scholar 

  • Essien JP, Umoh AA, Akpan EJ, Eduok SI, Umoiyoho A (2009) Growth, keratinolytic proteinase activity and thermotolerance of dermatophytes associated with alopecia in Uyo, Nigeria. Acta Microbiol Immunol Hung 56:61–69

    Article  CAS  Google Scholar 

  • Fakhfakh N, Ktari N, Siala R, Nasri M (2013) Wool-waste valorization: production of protein hydrolysate with high antioxidative potential by fermentation with a new keratinolytic bacterium, Bacillus pumilus A1. J Appl Microbiol 115:424–433

    Article  CAS  Google Scholar 

  • Fang Z, Zhang J, Liu B, Du G, Chen J (2013) Biochemical characterization of three keratinolytic enzymes from Stenotrophomonas maltophilia BBE11-1 for biodegrading keratin wastes. Int Biodeterior Biodegradation 82:66. https://doi.org/10.1016/j.ibiod.2013.03.008

    Article  CAS  Google Scholar 

  • Farag AM, Hassan MA (2004) Purification, characterization and immobilization of a keratinase from Aspergillus oryzae. Enzyme Microb Technol 34:85–93. https://doi.org/10.1016/j.enzmictec.2003.09.002

    Article  CAS  Google Scholar 

  • Fellahi S, Chibani A, Lagerstedt EF, Taherzadeh MJ (2016) Identification of two new keratinolytic proteases from a Bacillus pumilus strain using protein analysis and gene sequencing. AMB Express 6:42. https://doi.org/10.1186/s13568-016-0213-0

    Article  CAS  Google Scholar 

  • Filipello Marchisio V (2000) Keratinophylic fungi: their role in nature and degradation of keratinous substrate. In: Kushwaha RKS, Guarro J (eds) Biology of dermatophytes and other keratinophylic fungi. Revista Iberoamericana de Micología, Spain, pp 86–92

    Google Scholar 

  • Forgacs G, Alinezhad S, Mirabdollah A, Feuk-Lagerstedt E, Horváth IS (2011) Biological treatment of chicken feather waste for improved biogas production. J Environ Sci 23:1747–1753. https://doi.org/10.1016/S1001-0742(10)60648-1

    Article  CAS  Google Scholar 

  • Forgacs G, Lundin M, Taherzadeh M, Horvath I (2013) Pretreatment of chicken feather waste for improved biogas production. Appl Biochem Biotechnol 169:2016–2028. https://doi.org/10.1007/s12010-013-0116-3

    Article  CAS  Google Scholar 

  • Fortier M, Cadrin M (2012) Simple epithelial keratins k8 and k18: from structural to regulatory protein. In: Dullaart R, Mousques J (eds) Keratin: structure, properties and applications. Nova Science Publishers, Hauppauge, pp 1–35

    Google Scholar 

  • Frankel MJ, Gillespe JM (1976) The proteins of the keratin component of bird’s beaks. Aust J Biol Sci 29(5–6):467–479

    Article  Google Scholar 

  • Friedrich AB, Antranikian G (1996) Keratin degradation by Fervidobacterium pennavorans, a novel thermophilic anaerobic species of the order thermotogales. Appl Environ Microbiol 62(8):2875–2882

    CAS  Google Scholar 

  • Friedrich J, Gradisar H, Mandin D, Chaumont JP (1999) Screening fungi for synthesis of keratinolytic enzymes. Lett Appl Microbiol 28:127–130

    Article  CAS  Google Scholar 

  • Gegeckas A, Gudiukaite R, Debski J, Citavicius D (2015) Keratinous waste decomposition and peptide production bykeratinase from Geobacillus stearothermophilus AD-11. Int J Biol Macromol 75:158–165

    Article  CAS  Google Scholar 

  • Gessesse A, Hatti-Kaul R, Gashe BA, Mattiasson B (2003) Novel alkaline proteases from alkaliphilic bacteria grown on chicken feather. Enzyme Microb Technol 32:519–524. https://doi.org/10.1016/S0141-0229(02)00324-1

    Article  CAS  Google Scholar 

  • Ghosh A, Chakrabarti K, Chattopadhyay D (2008) Degradation of raw feather by a novel high molecular weight extracellular protease from newly isolated Bacillus cereus DCUW. J Ind Microbiol Biotechnol 35(8):825–834

    Article  CAS  Google Scholar 

  • Gierloff BCH, Catic I (1961) Om anvendelse of griseofulvin specielt in veterinaer praksis. Nord Vet Med 13:571–592

    Google Scholar 

  • Gioppo NMR, Moreira-Gasparin FG, Costa AM, Alexandrino AM, Souza CGM, Peralta RM (2009) Influence of the carbon and nitrogen sources on keratinase production by Myrothecium verrucaria in submerged and solid state cultures. J Ind Microbiol Biotechnol 36:705–711

    Article  CAS  Google Scholar 

  • Godheja J, Shekhar SK, Modi DR (2014) Biodegradation of keratin from chicken feathers by fungal species as a means of sustainable development. Asian J Pharm Technol 4(2):69–73

    Google Scholar 

  • Goldstein G, Flory KR, Browne BA, Majid S, Ichida JM, Burtt EH (2004) Bacterial degradation of black and white feathers. Auk 121:656–659

    Article  Google Scholar 

  • Gousterova A, Nustorova M, Paskaleva D, Naydenov M, Neshev G, Vasileva-Tonkova E (2012) Assessment of feather hydrolysate from thermophilic actinomycetes for soil amendment and biological control application. Int J Environ Res 6:467–474

    CAS  Google Scholar 

  • Gradisar H, Friedrich J, Krizaj I, Jerala R (2005) Similarities and specificities of fungal keratinolytic proteases: comparison of keratinases of Paecilomyces marquandii and Doratomyces microspores to some know proteases. Appl Environ Microbiol 71:3420–3426. https://doi.org/10.1128/AEM.71.7.3420-3426.2005

    Article  CAS  Google Scholar 

  • Greaves MS, Moll JMH (1976) Amino acid composition of human nails as measured by gas–liquid chromatography. Clin Chem 22(10):1608–1613

    CAS  Google Scholar 

  • Gunderson AR, Frame AM, Swaddle JP, Forsyth MH (2008) Resistance of melanized feathers to bacterial degradation: is it really so black and white? J Avian Biol 39:539–545

    Article  Google Scholar 

  • Gupta R, Ramnani P (2006) Microbial keratinases and their prospective applications: an overview. Appl Microbiol Biotechnol 70:21–33. https://doi.org/10.1007/s00253-005-0239-8

    Article  CAS  Google Scholar 

  • Gupta R, Rajput R, Sharma R, Gupta N (2013a) Biotechnological applications and prospective market of microbial keratinases. Appl Microbiol Biotechnol 97:9931–9940. https://doi.org/10.1007/s00253-013-5292-0

    Article  CAS  Google Scholar 

  • Gupta R, Sharma R, Beg Q (2013b) Revisiting microbial keratinases: next generation proteases for sustainable biotechnology. Crit Rev Biotechnol 33:216–228. https://doi.org/10.3109/07388551.2012.685051

    Article  CAS  Google Scholar 

  • Gurav RG, Jadhav JP (2013a) A novel source of biofertilizer from feather biomass for banana cultivation. Environ Sci Pollut Res 20:4532–4539

    Article  CAS  Google Scholar 

  • Gurav RG, Jadhav JP (2013b) Biodegradation of keratinous waste by Chryseobacterium sp. RBT isolated from soil contaminated with poultry waste. J Basic Microbiol 53(2):128–135

    Article  CAS  Google Scholar 

  • Gurav RG, Tang J, Jadhav JP (2016) Sulfitolytic and keratinolytic potential of Chryseobacterium sp. RBT revealed hydrolysis of melanin containing feathers. Biotech 6:145. https://doi.org/10.1007/s13205-016-0464-0

    Google Scholar 

  • Gushterova A, Vasileva-Tonkova E, Dimova E, Nedkov P, Haertle T (2005) Keratinase production by newly isolated Antarctic actinomycete strains. World J Microbiol Biotechnol 21(6–7):831–834. https://doi.org/10.1007/s11274-004-2241-1

    Article  CAS  Google Scholar 

  • Haake AR, Konig G, Sawyer RH (1984) Avian feather development: relationships between morphogenesis and keratinization. Dev Biol 106:406–413

    Article  CAS  Google Scholar 

  • Habbeche A, Saoudi B, Jaouadi B, Haberra S, Kerouaz B, Boudelaa M, Badis A, Ladjama A (2014) Purification and biochemical characterization of a detergent-stable keratinase from a newly thermophilic actinomycete Actinomadura keratinilytica strain Cpt29 isolated from poultry compost. J Biosci Bioeng 117:413–421. https://doi.org/10.1016/j.jbiosc.2013.09.006

    Article  CAS  Google Scholar 

  • Hadas A, Kautsky L (1994) Feather meal, a semi-slow-release nitrogen fertilizer for organic farming. Fertil Res 38:165–170

    Article  Google Scholar 

  • Han M, Luo W, Gu Q, Yu X (2012) Isolation and characterization of a keratinolytic protease from a feather- degrading bacterium Pseudomonas aeruginosa C11. Afr J Microbiol Res 6(9):2211–2221

    CAS  Google Scholar 

  • Hartrianti P, Ling L, Goh LMM, Ow KSA, Samsonray R, Sow WT (2015) Modulating mesenchymal stem cell behavior using human hair keratin-coated surfaces. Stem Cells Int. https://doi.org/10.1155/2015/752424

    Google Scholar 

  • Hirata A, Hori Y, Koga Y, Okada J, Sakudo A, Ikuta K, Kanaya S, Takano K (2013) Enzymatic activity of a subtilisin homolog, Tk-SP, from Thermococcus kodakarensisin detergents and its ability to degrade the abnormal prion protein. BMC Biotechnol 13:19

    Article  CAS  Google Scholar 

  • Huang H, Spencer JL, Soutyrine A, Guan J, Rendulich J (2007) Evidence for degradation of abnormal prion protein in tissues from sheep with scrapie during composting. Can J Vet Res 71:34–40

    CAS  Google Scholar 

  • Huang Y, Busk PK, Herbst FA, Lange L (2015) Genome and secretome analyses provide insights into keratin decomposition by novel proteases from the non-pathogenic fungus Onygena corvina. Appl Microbiol Biotechnol 99(22):9635–9649. https://doi.org/10.1007/s00253-015-6805-9

    Article  CAS  Google Scholar 

  • Hui Z, Doi H, Kanouchi H, Matsuura Y, Mohri S, Nonomura Y, Oka T (2004) Alkaline serine protease produced by Streptomyces sp. degrades PrPSc. Biochem Biophys Res Commun 321(1):45–50

    Article  CAS  Google Scholar 

  • Ichida JM, Krizova L, LeFevre CA, Keener HM, Elwell DL, Burtt EH (2001a) Bacterial inoculum enhances keratin degradation and biofilm formation in poultry compost. J Microbiol Methods 47:199–208

    Article  CAS  Google Scholar 

  • Ichida JM, Krizova L, LeFevre CA, Keener HM, Elwell DL, Burtt EH (2001b) Bacterial inoculum enhances keratin degradation and biofilm formation in poultry compost. J Microbiol Methods 47:199–208. https://doi.org/10.1016/S0167-7012(01)00302-5

    Article  CAS  Google Scholar 

  • Ignatova Z, Gousterova A, Spassov G, Nedkov P (1999) Isolation and partial characterisation of extracellular keratinase from a wool degrading thermophilic actinomycete strain Thermoactinomyces candidus. Can J Microbiol 45(3):217–222

    Article  CAS  Google Scholar 

  • Iruolaje FO, Ogbeba J, Tula MY, Ijebor JA, Dogo BA (2016) Isolation and identification of keratinolytic bacteria that exhibit feather-degrading potentials. J Adv Biol Biotechnol 5(2):1–9

    Article  Google Scholar 

  • Itsune O, Isao M, Keizo H, Naoya I, Mayumi H, Hisami M (2002) Cleaning agent composition. Patent JP200225629

  • Jadhav RS, Karad DD, Kulakrni SW (2016) Isolation, identification and characterization of keratinolytic Streptomyces coelicoflavus. Int J Curr Microbiol Appl Sci 5(7):153–163

    Article  Google Scholar 

  • Jani SA, Soni R, Patel H, Prajapati B, Patel Gayatri (2014) Screening, isolation and characterization of keratin degrading actinomycetes Streptomyces sp. and Saccharothrix xinjiangensi and analyzing their significance for production of keratinolytic protease and feed grade amino acids. Int J Curr Microbiol Appl Sci 3(9):940–955

    CAS  Google Scholar 

  • Jaouadi B, Aghajari N, Haser R, Bejar S (2010) Enhancement of the thermostability and the catalytic efficiency of Bacillus pumilus CBS protease by site directed mutagenesis. Biochimie 92:360–369

    Article  CAS  Google Scholar 

  • Jayalakshmi T, Krishnamoorthy P, Kumar GR, Sivamani P (2010) Isolation and screening of a feather-degrading keratinolytic actinomycetes from Actinomyces sp. J Am Sci 6(12):45–48

    Google Scholar 

  • Jeong JH, Lee OM, Jeon YD, Kim JD, Lee NR, Lee CY, Son HJ (2010) Production of keratinolytic enzyme by a newly isolated feather-degrading Stenotrophomonas maltophilia that produces plant growth-promoting activity. Process Biochem 45:1738–1745. https://doi.org/10.1016/j.procbio.2010.07.020

    Article  CAS  Google Scholar 

  • Jin HS, Park SY, Kim K, Lee YJ, Nam GW, Kang NJ, Lee DW (2017) Development of a keratinase activity assay using recombinant chicken feather keratin substrates. PLoS ONE 12(2):e0172712. https://doi.org/10.1371/journal.pone.0172712

    Article  CAS  Google Scholar 

  • Johnson CJ, Pedersen JA, McKenzie D, Aiken JM (2011) Meat and bone meal and mineral feed additives increase the risk of oral prion disease transmission. J Toxicol Environ Health 74:161–166

    Article  CAS  Google Scholar 

  • Kaluzewska M, Wicz KWA, Wski J (1991) Microscopic examination of keratin substrates subjected to the action of the enzymes of Streptomyces fradiae. Int Biodeterior Biodegradation 27:11–26

    Article  CAS  Google Scholar 

  • Kanbe T, Tanaka K (1982) Ultrastructure of the invasion of human hair in vitro by the keratinophilic fungus Microsporum gypsum. Infect Immun 38:706–715

    CAS  Google Scholar 

  • Kanbe T, Suzuki S, Tanaka K (1986) Structural differentiation in the frond and boring hyphae of the dermatophyte Microsporum canis invading human hair in vitro. J Electron Microsc (Tokyo) 35:38–46

    CAS  Google Scholar 

  • Kansoh AL, Hossiny EN, Abd El-Hameed EK (2009) Keratinase production from feathers wastes using some local Streptomyces isolates. Aust J Basic Appl Sci 3:561–571

    CAS  Google Scholar 

  • Karshan M (1930) The chemistry and staining reactions of keratin. J Dent Res 10:181–186

    Article  CAS  Google Scholar 

  • Karthikeyan R, Balaji S, Sehgal P (2007) Industrial applications of keratins—a review. J Sci Ind Res 66:710–715

    CAS  Google Scholar 

  • Kaul S, Sumbali G (1997) Keratinolysis by poultry farm soil fungi. Mycopathologia 139:137–140

    Article  CAS  Google Scholar 

  • Kazi YF, Kumar P, Soomro IH (2015) Characterization of the keratinolytic activity of indigenous Bacillus subtilis keratinase. J Chem Pharm Res 7(4):800–809

    CAS  Google Scholar 

  • Kazzaz AE, Feizi HZ, Guvenmez HK (2015) Keratinolytic protease production and characterization from Bacillus sp. isolated from poultry wastes. Int J Appl Biol Pharm 6(4):63–73

    CAS  Google Scholar 

  • Khardenavis A, Kapley A, Purohit H (2009) Processing of poultry feathers by alkaline keratin hydrolyzing enzyme from Serratia sp. HPC 1383. Waste Manag 29:1409–1415

    Article  CAS  Google Scholar 

  • Kim JD (2003) Keratinolytic activity of five Aspergillus species isolated from poultry farming soil in Korea. Mycobiology 31:157–161

    Article  Google Scholar 

  • Kim JD (2007) Purification and characterization of a keratinase from a feather-degrading fungus, Aspergillus flavus Strain K-03. Microbiology 35(4):219–225

    CAS  Google Scholar 

  • Kim JM, Lim WJ, Suh HJ (2001) Feather degrading Bacillus species from poultry waste. Process Biochem 37:287–291

    Article  CAS  Google Scholar 

  • Koelsch G, Tang J, Loy JA, Monod M, Jackson K, Foundling SI, Lin X (2000) Enzymic characteristics of secreted aspartic proteases of Candida albicans. Biochem Biophys Acta 1480:117–131. https://doi.org/10.1016/S0167-4838(00)00068-6

    CAS  Google Scholar 

  • Kojima M, Kanai M, Tominaga M, Kitazume S, Inoue A, Horikoshi K (2006) Isolation and characterization of a feather degrading enzyme from Bacillus pseudofirmis FA30-01. Extremophiles 10:229–235

    Article  CAS  Google Scholar 

  • Korkmaz H, Hur H, Diyncer S (2004) Characterization of alkaline keratinase of Bacillus licheniformis strain HK-1 from poultry waste. Ann Microbiol 54:201–211

    CAS  Google Scholar 

  • Korniłłowicz-Kowalska T (1999) Studies on decomposition of keratin wastes by saprotrophic microfungi. III. Activity and properties of keratinolytic enzymes. Acta Mycol 34:65–78

    Article  Google Scholar 

  • Kornillowicz-Kowalska T, Bohacz J (2010) Dynamics of growth and succession of bacterial and fungal communities during composting of feather waste. Bioresour Technol 101:1268–1276

    Article  CAS  Google Scholar 

  • Korniłłowicz-Kowalska T, Bohacz J (2011) Biodegradation of keratin waste: theory and practical aspects. Waste Manage 31:1689–1701. https://doi.org/10.1016/j.wasman.2011.03.024

    Article  CAS  Google Scholar 

  • Kota KP, Shaik SS, Kota RK, Karlapudi AP (2014) Bioplastic from chicken feather waste. Int J Pharm Sci Rev Res 27(2):373–375

    Google Scholar 

  • Kowata K, Nakaoka M, Nishio K, Fukao A, Satoh A, Ogoshi M, Takahashi S, Tsudzuki M, Takeuchi S (2014) Identification of a feather β-keratin gene exclusively expressed in pennaceous barbule cells of contour feathers in chicken. Gene 542:23–28

    Article  CAS  Google Scholar 

  • Krelpak L, Doucet J, Briki F (2004) New aspects of the α-helix to β-sheets transition in stretched hard α-keratin fibers. Biophys J 8:640–647

    Google Scholar 

  • Kumar AG, Swarnalatha S, Gayathri S, Nagesh N, Sekaran G (2008) Characterization of an alkaline active-thiol forming extracellular serine keratinase by the newly isolated Bacillus pumilus. J Appl Microbiol 104:411–419. https://doi.org/10.1111/j.1365-2672.2007.03564.x

    CAS  Google Scholar 

  • Kunert J (1972) Keratin decomposition by dermatophytes: evidence of the sulphitolysis of the protein. Experientia 28(9):1025–1026

    Article  CAS  Google Scholar 

  • Kunert J (1989) Biochemical mechanism of keratin degradation by the actinomycete Streptomyces fradiae and the fungus Microsporum gypseum: a comparison. J Basic Microbiol 29(9):597–604

    Article  CAS  Google Scholar 

  • Kunert J (2000) Physiology of keratinophilic fungi. In: Kushwaha RKS, Guarro J (eds) Biology of dermatophytes and other keratinophilic fungi. Revista Iberoamericana de Micología, Spain, pp 77–85

    Google Scholar 

  • Laba W, Choinska A, Rodziewicz A, Piegza M (2015) Keratinolytic abilities of Micrococcus luteus from poultry waste. Braz J Microbiol 46(3):691–700

    Article  CAS  Google Scholar 

  • Lange L, Busk PK, Huang Y (2014) Use of a microbial composition for the degradation of keratinaceous materials. Denmark Patent WO 2014/169920 A2, 23 October 2014

  • Lange L, Huang Y, Busk PK (2016) Microbial decomposition of keratin in nature—a new hypothesis of industrial relevance. Appl Microbiol Biotechnol 100:2083–2096

    Article  CAS  Google Scholar 

  • Langeveld JPM, Wang JJ, Van De Wiel DFM, Shih GC (2003) Enzymatic degradation of prion protein in brain stem from infected cattle and sheep. J Infect Dis 188:1782–1789

    Article  CAS  Google Scholar 

  • Lateef A, Oloke JK, Gueguim Kana EB, Sobowale BO, Ajao SO, Bello BY (2010) Keratinolytic activities of a new feather-degrading isolate of Bacillus cereus LAU 08 isolated from Nigerian soil. Int Biodeterior Biodegradation 64:162–165

    Article  CAS  Google Scholar 

  • Lateef A, Adelere IA, Gueguim-Kana EB, Asafa TB, Beukes LS (2015) Green synthesis of silver nanoparticles using keratinase obtained from a strain of Bacillus safensis LAU 13. Int Nano Lett 5:29–35. https://doi.org/10.1007/s40089-014-0133-4

    Article  CAS  Google Scholar 

  • Lee H, Suh DB, Hwang JH, Suh HJ (2002) Characterization of a keratinolytic metalloprotease from Bacillus spp. SCB-3. Appl Biochem Biotechnol 97:123–133

    Article  CAS  Google Scholar 

  • Lee YJ, Kim JH, Kim HK, Lee JS (2004) Production and characterization of keratinase from Paracoccus sp. WJ-98. Biotechnol Bioprocess Eng 9:17–22

    Article  CAS  Google Scholar 

  • Lee H, Noh K, Lee SC, Kwon IK, Han DW, Lee IS (2014) Human hair keratin and its-based biomaterials for biomedical applications. Tissue Eng Regen Med 1(4):255–265

    Article  CAS  Google Scholar 

  • Lee YJ, Dhanasingh I, Ahn JS, Jin HS, Choi JM, Lee SH, Lee DW (2015) Biochemical and structural characterization of a keratin-degrading M32 carboxypeptidase from Fervidobacterium islandicum AW-1. Biochem Biophys Res Commun 468:927–933

    Article  CAS  Google Scholar 

  • Letourneau F, Soussotte V, Bressollier P, Brandland P, Verneuil B (1998) Keratinolytic activity of Streptomyces sp. S.K1-02: a new isolated strain. Lett Appl Microbiol 26:77–80

    Article  CAS  Google Scholar 

  • Lin X, Lee CG, Casale ES, Shih JCH (1992) Purification and characterization of a keratinase from a feather degrading Baciilus licheniformis strain. Appl Environ Microbiol 58:3271–3275

    CAS  Google Scholar 

  • Lin X, Tang J, Koelsch G, Monod M, Foundling S (1993) Recombinant Canditropsin, an extracellular aspartic protease from yeast Candida tropicalis. J Biol Chem 268:20143–20147

    CAS  Google Scholar 

  • Lin X, Inglis GD, Yanke LJ, Cheng KJ (1999) Selection and characterization of feather-degrading bacteria from canola meal compost. J Ind Microbiol Biotechnol 23:149–153

    Article  CAS  Google Scholar 

  • Lindgren J, Sjovall P, Carney RM, Cincotta A, Uvdal P, Hutcheson SW (2015) Molecular composition and ultrastructure of Jurassic paravian feathers. Sci Rep 27(5):13520. https://doi.org/10.1038/srep13520

    Article  CAS  Google Scholar 

  • Liu Q, Longa K, Lub F, Chena J (2017) Biodegradation and antibacterial activity of a feather-degrading strain of bacterium. Biocatal Agric Biotechnol 9:195–200

    Google Scholar 

  • Lucas FS, Broennimann O, Febbraro I, Heeb P (2003) High diversity among feather-degrading bacteria from a dry meadow soil. Microb Ecol 45:282–290

    Article  CAS  Google Scholar 

  • Malviya HK, Rajak RC, Hasija SK (1992) Purification and partial characterization of 2 extracellular keratinases of Scopulariopsis brevicaulis. Mycopathology 119:161–165. https://doi.org/10.1007/BF00448814

    Article  CAS  Google Scholar 

  • Manczinger L, Rozs M, Vagvolgyi C, Kevei F (2003) Isolation and characterization of a new keratinolytic Bacillus licheniformis strain. World J Microbiol Biotechnol 19:35–39. https://doi.org/10.1023/A:1022576826372

    Article  CAS  Google Scholar 

  • Manirujjaman M, Amin R, Nahid AA, Alam MS (2016) Isolation and characterization of feather degrading bacteria from poultry waste. Afr J Bacteriol 8(3):14–21

    Google Scholar 

  • Manning PL, Edwards NP, Wogelius RA, Bergmann U, Barden HE, Larson PL (2013) Synchrotron based chemical imaging reveals plumage patterns in a 150 million year old early bird. J Anal At Spectrom 28:1024–1030. https://doi.org/10.1039/C3JA50077B

    Article  CAS  Google Scholar 

  • Marcondes NR, Taira CL, Vandresen DC, Svidzinski TIE, Kadowaki MK, Peralta RM (2008) New feather degrading filamentous fungi. Microb Ecol 56(1):13–17

    Article  Google Scholar 

  • Marshall RC, Gillespie JM (1977) The keratin proteins of wool, horn and hoof from sheep. Aust J Biol Sci 30:389–400

    Article  CAS  Google Scholar 

  • Martınez-Hernandez AL, VelascoSantos C (2012) Keratin fibers from chicken feathers: structure and advances in polymer composites. In: Dullaart R, Mousques J (eds) Keratin: structure, properties and applications. Nova Science Publishers, Hauppauge, pp 149–211

    Google Scholar 

  • Matikeviciene V, Masiliuniene D, Grigiskis S (2009) Degradation of keratin containing wastes by bacteria with keratinolytic activity. Environ Technol 1:284–289

    Google Scholar 

  • Mavis SG, John MHM (1976) Amino acid composition of human nail, as measured by gas liquid chromatography. Clin Chem 22(10):1608–1613

    Google Scholar 

  • Mazotto AM, de Melo ACN, Macrae A, Rosado AS, Peixoto R, Cedrola SML, Couri S, Zingali RB, Villa ALV, Rabinovitch L, Chaves JQ, Vermelho AB (2011) Biodegradation of feather waste by extracellular keratinases and gelatinases from Bacillus spp. World J Microbiol Biotechnol 27:1355–1365

    Article  CAS  Google Scholar 

  • Miranda-Vilela AL, Botelho AJ, Muehlmann LA (2014) An overview of chemical straightening of human hair: technical aspects, potential risks to hair fibre and health and legal issues. Int J Cosmet Sci 36:2–11

    Article  CAS  Google Scholar 

  • Mishra M (2013) Role of eco-friendly agricultural practices in Indian agriculture development. Int J Agric Food Sci Techol 4(2):11–15

    Google Scholar 

  • Mitsuiki S, Ichikawa M, Oka T, Sakai M, Moriyama Y, Sameshima Y, Goto M, Furukawa K (2004) Molecular characterization of a keratinolytic enzyme from an alkaliphilic Nocardiopsis sp. TOA-1. Enzyme Microb Technol 34:482–489

    Article  CAS  Google Scholar 

  • Mitsuiki S, Hui Z, Matsumoto D, Sakai M, Moriyama Y, Furukawa K, Kanouchi H, Oka T (2006) Degradation of PrP(Sc) by keratinolytic protease from Nocardiopsis sp. TOA-1. Biosci Biotechnol Biochem 70:1246–1248

    Article  CAS  Google Scholar 

  • Mohamedin AH (1999) Isolation, identification and some cultural conditions of a protease—producing thermophilic Streptomyces strain grown on chicken feather as a substrate. Int Biodeterior Biodegradation 43:13–21

    Article  CAS  Google Scholar 

  • Monod M (2008) Secreted proteases from dermatophytes. Mycopathologia 166:285–294. https://doi.org/10.1007/s11046-008-9105-4

    Article  Google Scholar 

  • Monod M, Capoccia S, Lechenne B, Zaugg C, Holdom M, Jousson O (2002) Secreted proteases from pathogenic fungi. Int J Med Microbiol 292:405–419. https://doi.org/10.1078/1438-4221-00223

    Article  CAS  Google Scholar 

  • Montero-Barrientos M, Rivas R, Velazquez E, Monte E, Roig MG (2005) Terrabacter terrae sp. nov., a novel actinomycete isolated from soil in Spain. Int J Syst Evol Microbiol 55:2491–2495

    Article  CAS  Google Scholar 

  • Moritz JS, Latshaw JD (2001) Indicators of nutritional value of hydrolyzed feather meal. Poult Sci 8:79–86

    Article  Google Scholar 

  • Moyer AE, Zheng W, Schweitzer MH (2016) Keratin durability has implications for the fossil record: results from a 10 year feather degradation experiment. PlosOne 11(7):e0157699. https://doi.org/10.1371/journal.pone.0157699

    Article  CAS  Google Scholar 

  • Mukherjee AK, Adhikari H, Rai SK (2008) Production of alkaline protease by a thermophilic Bacillus subtilis under solid-state fermentation (SSF) condition using Imperata cylindrica grass and potato peel as low-cost medium, characterization and application of enzyme in detergent formulation. Biochem Eng J 39:353–361

    Article  CAS  Google Scholar 

  • Mukherjee A, Rai S, Bordoloi N (2011) Biodegradation of waste chicken-feathers by an alkaline beta-keratinase (mukartinase) purified from a mutant Brevibacillus sp. strain AS-S10- II. Int Biodeterior Biodegradation 65:1229–1237. https://doi.org/10.1016/j.ibiod.2011.09.007

    Article  CAS  Google Scholar 

  • Murdan S (2002) Drug delivery to the nail following topical application. Int J Pharm 236:1–26. https://doi.org/10.1016/S0378-5173(01)00989-9

    Article  CAS  Google Scholar 

  • Nagal S, Jain PC (2010) Feather degradation by strains of Bacillus isolated from decomposing feathers. Braz J Microbiol 41:196–200

    Article  Google Scholar 

  • Nam GW, Lee DW, Lee HS, Lee Lee NJ, Kim BJ, Choe EA (2002) Native feather degradation by Fervidobacterium islandicum AW-1, a newly isolating keratinase producing thermophilic anaerobe. Arch Microbiol 178:538–547

    Article  CAS  Google Scholar 

  • Nayaka S, Vidyasagar GM (2013) Development of eco-friendly bio-fertilizer using feather compost. Annu Rev Plant Biol 2:238–244

    Google Scholar 

  • Nayaka S, Gireesh Babu K, Vidyasagar GM (2013) Purification and characterization of keratinase from hair-degrading Streptomyces albus. Int J Bioassays 2(03):599–604

    Google Scholar 

  • Negi M, Tsuboi R, Matsui T, Ogawa H (1984) Isolation and characterization of proteinase from Candida albicans: substrate specificity. J Invest Dermatol 83:32–36

    Article  CAS  Google Scholar 

  • Ningthoujam DS, Devi LJ, Devi PJ, Kshetri P, Tamreihao K, Mukherjee S, Devi SS, Betterson N (2016) Optimization of keratinase production by Amycolatopsis sp. Strain MBRL40 from a limestone habitat. J Bioprocess Biotech 6(5):1000282. https://doi.org/10.4172/2155-9821.1000282

    Google Scholar 

  • Noval JJ, Nickerson WJ (1959) Decomposition of native keratin by Streptomyces fradie. J Bacteriol 77:251–263

    CAS  Google Scholar 

  • Odetallah NH, Wang JJ, Garlich JD, Shih JCH (2003) Keratinase in starter diets improves growth of broiler chicks. Poult Sci 82:664–670. https://doi.org/10.1093/ps/82.4.664

    Article  CAS  Google Scholar 

  • Okoroma EA, Garelick H, Abiola O, Purchase D (2012) Identification and characterisation of a Bacillus licheniformis strain with profound keratinase activity for degradation of melanised feather. Int Biodeterior Biodegradation 74:54–60

    Article  CAS  Google Scholar 

  • Okoroma EA, Purchase D, Garelick H, Morris R, Neale MH, Wind O, Abiola OO (2013) Enzymatic formulation capable of degrading scrapie prion under mild digestion conditions. PLoS ONE. https://doi.org/10.1371/journal.pone.0068099

    Google Scholar 

  • Onifade A, Al-Sane N, Al-Musallam A, Al-Zarban S (1998) A review: potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. Bioresour Technol 66:1–11

    Article  CAS  Google Scholar 

  • Pan KM, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, Mehlhorn I, Huang Z, Fletterick RJ, Cohen FE, Prusiner SB (1993) Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci USA 90:0962–0966

    Google Scholar 

  • Papadopoules MC, Boushy EI, Roodbeen AR, Ketalaars EH (1986) Purification and characterization of a keratinolytic serine proteases from Streptomyces albidoflavus. J Appl Environ Microbiol 65:2570–2576

    Google Scholar 

  • Papadopoulos MC (1989) Effect of processing on high-protein feedstuffs: a review. Biol Wastes 29:123–138. https://doi.org/10.1016/0269-7483(89)90092-X

    Article  Google Scholar 

  • Paul T, Das A, Mandal A, Suman K, Halder SK, Jana A, Maity C, Das Mohapatra PK, Pati BR, Mondal KC (2014) An efficient cloth cleaning properties of a crude keratinase combined with detergent: towards industrial viewpoint. J Clean Prod 66:672–684. https://doi.org/10.1016/j.jclepro.2013.10.054

    Article  CAS  Google Scholar 

  • Peng CY, Hong XF, Jing Y, Jing-Hua LU, Shi-Jun Q (2007) Screening for a new Streptomyces strain capable of efficient keratin degradation. J Environ Sci 19:1125–1128

    Article  Google Scholar 

  • Poole AJ, Church JS, Huson MG (2009) Environmentally sustainable fibers from regenerated protein. Biomacromol 10:1–8

    Article  CAS  Google Scholar 

  • Poopathi P, Krishnaraj T, Chinnasamy M, Ragul K (2014) Purification and characterization of keratinase from feather degrading bacterium useful for mosquito control—a new report. Trop Biomed 31(1):97–109

    CAS  Google Scholar 

  • Priyanga V (2016) Physiological and nutritional factors affecting synthesis of extracellular metalloproteases by Clostridium bifermentans. South Asian J Eng Technol 2(24):101–109

    Google Scholar 

  • Pugh GJF, Evans MD (1970) Keratinophilic fungi associated with birds. I. Fungi isolated from feathers, nests and soils. Trans Br Mycol Soc 54:233–240

    Article  Google Scholar 

  • Puhl AA, Brent Selinger L, McAllister TA, Douglas Inglis G (2009) Actinomadura keratinilytica sp. nov., a keratin degrading actinobacterium isolated from bovine manure compost. Int J Syst Evol Microbiol 59:828–834

    Article  CAS  Google Scholar 

  • Radha S, Gunasekaran P (2007) Cloning and expression of keratinase gene in Bacillus megaterium and optimization of fermentation conditions for the production of keratinase by recombinant strain. J Appl Microbiol 103:1301–1310

    Article  CAS  Google Scholar 

  • Rai SK, Mukherjee AK (2010) Statistical optimization of production, purification and industrial application of a laundry detergent and organic solvent-stable subtilisin like serine protease (Alzwiprase) from Bacillus subtilis DM-04. Biochem Eng J 48:172–180

    Article  CAS  Google Scholar 

  • Rai S, Vishwakarma Y (2011) Study of keratin degradation by some potential bacterial isolates from soil. J Soil Sci 1(1):01–03

    Google Scholar 

  • Rai S, Konwarh R, Mukherjee A (2009) Purification, characterization and biotechnological application of an alkaline beta-keratinase produced by Bacillus subtilis RM-01 in solid-state fermentation using chicken- feather as substrate. Biochem Eng J 45:218–225. https://doi.org/10.1016/j.bej.2009.04.001

    Article  CAS  Google Scholar 

  • Rajput R, Sharma R, Gupta R (2010) Biochemical characterization of a thiol-activated, oxidation stable keratinase from Bacillus pumilus KS12. Enzyme Res 2010:32148-7. https://doi.org/10.4061/2010/132148

    Article  CAS  Google Scholar 

  • Ramakrishnaiah G, Mustafa SM, Srihari G (2013) Studies on keratinase producing fungi isolated from poultry waste and their enzymatic activity. J Microbiol Res 3(4):148–151

    Google Scholar 

  • Rapp D, Potier P, Jocteur-Monrozier L, Richaume A (2006) Prion degradation in soil: possible role of microbial enzyme simulated by the decomposition of buried carcasses. J Environ Sci Technol 40:6324–6329

    Article  CAS  Google Scholar 

  • Riessen S, Antranikian G (2001) Isolation of Thermoanaerobacter keratinophilus sp. nov., a novel thermophilic, anaerobic bacterium with keratinolytic activity. Extremophiles 5:399–408. https://doi.org/10.1007/s007920100209

    Article  CAS  Google Scholar 

  • Riffel A, Brandelli A (2006) Keratinolytic bacteria isolated from feather waste. Braz J Microbiol 37:395–399

    Article  CAS  Google Scholar 

  • Riffel A, Lucas FS, Heeb P, Brandelli A (2003) Characterization of a new keratinolytic bacterium that completely degrades native feather keratin. Arch Microbiol 179(4):258–265

    Article  CAS  Google Scholar 

  • Riffle A, Brandelli A (2002) Isolation and characterization of a feather-degrading bacterium from the poultry processing industry. J Ind Microbiol Biotechnol 29:255–258. https://doi.org/10.1038/sj.jim.7000307

    Article  CAS  Google Scholar 

  • Rissen S, Antranikian G (2001) Isolation of thermoanaerobacter keratinophilus, a novel thermophilic, anaerobic bacterium with keratinolytic activity. Extemophiles 5:399–408

    Article  CAS  Google Scholar 

  • Robbins CR, Kelly CH (1970) Amino acid composition of human hair. Text Res J 40:891–896

    Article  CAS  Google Scholar 

  • Rouse JG, Van Dyke ME (2010) A review of keratin-based biomaterials for biomedical applications. Materials 3:999–1014

    Article  Google Scholar 

  • Rozs M, Manczinger L, Vagvolgi CS, Kevei F (2001) Screening of trypsin like thio protease by a new keratinolytic strain of Bacillus licheniformis. FEMS Microbiol Lett 205:221–224

    Article  CAS  Google Scholar 

  • Saha S, Dhanasekaran D (2010) Isolation and Screening of keratinolytic actinobacteria form keratin waste dumped soil in Tiruchirappalli and Nammakkal, Tamil Nadu, India. Curr Res J Biol Sci 2:124–131

    CAS  Google Scholar 

  • Sangali S, Brandelli A (2000) Feather keratin hydrolysis by a Vibrio sp. strain KR2. J Appl Microbiol 89:735–743

    Article  CAS  Google Scholar 

  • Sankar GG, Lakshmi SS, Prabhakar T, Kumari PVK (2014) Screening, partial purification and characterization of keratinase from newly isolated marine fungi. Int J Pharm Rev Res 24(2):257–262

    Google Scholar 

  • Santos RMDB, Firmino AAP, deSa CM, Felix CR (1996) Keratinolytic activity of Aspergillus fumigates Fresenius. Curr Microbiol 33:364–370

    Article  CAS  Google Scholar 

  • Saravanan K, Kannappan S, Bhaarathi D (2012) Exploration of amino acid content and morphological structure in chicken feather fiber. J Text Appar Technol Manage 7(3):1–6

    Google Scholar 

  • Saritha A, Neeraj W (2010) Degradation of chicken feather a poultry waste product by keratinolytic bacteria isolated from dumping Site at Ghazipur Poultry Processing Plant. Int J Poult Sci 9:482–489

    Article  Google Scholar 

  • Sarkar P, Dutta E, Sen P, Banerjee R (2012) Isolation and molecular characterization of extracellular keratinase from Xanthomonas sp: a potential approach in feather waste management. Asian J Sci Appl Technol 1(1):37–46

    Google Scholar 

  • Saunders SE, Jason C, Bartz JC, Vercauteren CC, Bartelt-Hunt SL (2011) An enzymatic treatment of soil-bound prions effectively inhibits replication. Appl Environ Microbiol 77:4313–4317

    Article  CAS  Google Scholar 

  • Schmidt WF (2002) Microcrystalline keratin: from feathers to composite products. In: Wallenberger FT, Weston NE, Ford R, Wool RP, Chawla K (eds) Proceedings of the material research symposium. December 2–6, 2002. Boston, Massachusetts, pp U1.5.1–U1.5.5

  • Schrooyen PMM, Dijkstra PJ, Oberthur RC, Bantjes A, Feijen J (2001) Stabilization of solutions of feather keratins by sodium dodecyl sulfate. J Colloid Interface Sci 240(1):30–39

    Article  CAS  Google Scholar 

  • Schweitzer MH (2011) Soft tissue preservation in terrestrial mesozoic vertebrates. Annu Rev Earth Planet Sci 39:187–216. https://doi.org/10.1146/annurev-earth-040610-133502

    Article  CAS  Google Scholar 

  • Schweitzer MH, Watt JA, Avci R, Knapp L, Chiappe L, Norell M (1999) Beta-keratin specific immunological reactivity in feather-like structures of the Cretaceous Alvarezsaurid, Shuvuuia deserti. J Exp Zool 285:146–157. https://doi.org/10.1002/(sici)1097-010x(19990815)285:2<146:aidjez7>3.0.co;2-a

    Article  CAS  Google Scholar 

  • Selvam K, Vishnupriya B (2012) Biochemical and molecular characterization of microbial keratinase and its remarkable applications. Int J Pharm Biol Sci Arch 3:267–275

    Google Scholar 

  • Selvam K, Vishnupriya B, Yamuna M (2013) Isolation and description of keratinase producing marine actinobacteria from South Indian Coastal Region. Afr J Biotechnol 12(1):19–26

    Article  Google Scholar 

  • Shadzi S, Chadeganipour M, Alimoradi M (2002) Isolation of keratinophilic fungi from elementary schools and public parks in Isfahan, Iran. Mycoses 45(11–12):496–499

    CAS  Google Scholar 

  • Shanmugam CSV, Kumar TS (2010) Screening and characterization of keratinase from Bacillus licheniformis isolated from Namakkal poultry farm. Researcher 2:89–96

    Google Scholar 

  • Sharma R, Sharma M (2011) Keratinase activity of dermatophytes and yeast species for poultry waste and waste water treatment. Omics Appl Biotechnol 3:19–22

    Google Scholar 

  • Sharma V, Sharma A, Seth R (2016) Effect of temperature and pH variations on growth pattern of keratinophilic fungi from Jaipur, India. Entomol Appl Sci Lett 3(5):177–181

    Google Scholar 

  • Shih JCH (1993) Recent development in poultry waste digestion and feather utilization—a review. Poult Sci 72:1617–1620

    Article  Google Scholar 

  • Shih JCH (2002) Method and composition for sterilizing surgical instruments. US Patent application US 2002/0192731

  • Sierpinski P, Garrett J, Ma J, Apel P, Klorig D, Smith T, Koman LA, Atala A, VanDyke M (2008) The use of keratin biomaterials derived from human hair for the promotion of rapid regeneration of peripheral nerves. Biomaterials 29:118–128

    Article  CAS  Google Scholar 

  • Singh I, Kushwaha RKS (2015) Keratinases and microbial degradation of keratin. Adv Appl Sci Res 6(2):74–82

    CAS  Google Scholar 

  • Spyros T (2003) Use of dual compartment mixing container for enzyme mixture useful to treat acne. Patent US6627192

  • Steinert PM, Wantz ML, Idler WW (1982) O-phosphoserine content of intermediate filament subunits. Biochem 21:177–183

    Article  CAS  Google Scholar 

  • Su C, Gong JS, Zhang RX, Tao LY, Dou WF, Zhang DD, Li H, Lu ZM, Xu ZH, Shi JS (2017) A novel alkaline surfactant-stable keratinase with superior feather-degrading potential based on library screening strategy. Int J Biol Macromol 95:404–411

    Article  CAS  Google Scholar 

  • Suntornsuk W, Suntornsukl L (2003) Feather degradation by Bacillus sp. FK46 in submerged cultivation. Bioresour Technol 86(3):239–243

    Article  CAS  Google Scholar 

  • Suzuki Y, Tsujimoto Y, Matsui H, Watanabe K (2006) Decomposition of extremely hard-to-degrade animal proteins by thermophilic bacteria. J Biosci Bioeng 102:73–81

    Article  CAS  Google Scholar 

  • Swetlana N, Jain PC (2010) Feather degradation by strains of Bacillus isolated from decomposing feathers. Braz J Microbiol 41:196–200

    Article  Google Scholar 

  • Syed DG, Lee JC, Li W, Kim C, Agasar D (2009) Production, characterization and application of keratinase from Streptomyces gulbargensis. Bioresour Technol 100:1868–1871. https://doi.org/10.1016/j.biortech.2008.09.047

    Article  CAS  Google Scholar 

  • Szabo I, Benedek A, Szabo IM, Barabas G (2000) Feather degradation with a thermotolerant Streptomyces graminofaciens strain. World J Microbiol Biotechnol 16:253–255

    Article  Google Scholar 

  • Takami H, Nogi Y, Horikoshi K (1999) Reidentification of the keratinase-producing facultative alkaliphilic Bacillus sp. AH-101 as Bacillus halodurans. Extremophiles 3(4):293–296. https://doi.org/10.1007/s007920050130

    Article  CAS  Google Scholar 

  • Thanh TQT, Hong TNT, Minh DBT (2014) Isolation and selection of feather-degrading aerobic bacteria from poultry processing plants in Mekong Delta of Vietnam. Nova J Med Biol Sci 3(4):1–6

    Article  Google Scholar 

  • Thys RCS, Lucas FS, Riffel A, Heeb P, Brandelli A (2004) Characterization of a protease of a feather-degrading Microbacterium species. Lett Appl Microbiol 39:181–186

    Article  CAS  Google Scholar 

  • Tiquia SM, Ichida JM, Keener HM, Elwell DL, Burtt EH Jr, Michel FC Jr (2005) Bacterial community profiles on feathers during composting as determined by terminal restriction fragment length polymorphism analysis of 16S rDNA genes. Environ Biotechnol 67:412–419

    Article  CAS  Google Scholar 

  • Tiwary E, Gupta R (2010) Medium optimization for a novel 58 kDa dimeric keratinase from Bacillus licheniformis ER-15: biochemical characterization and application in feather degradation and dehairing of hides. Bioresour Technol 101:6103–6110

    Article  CAS  Google Scholar 

  • Tomlinson DJ, Muelling CM, Fakler TM (2004) Formation of keratins in the bovine claw: roles of hormones, minerals and vitamins in functional claw integrity. J Dairy Sci 87:797–809

    Article  CAS  Google Scholar 

  • Tork S, Aly MM, Nawar L (2010) Biochemical and molecular characterization of a new local keratinase producing Pseudomomanas sp., MS21. Asian J Microbiol Biotechnol 2(1):1–13

    Article  CAS  Google Scholar 

  • Torka SE, Shaheinb YE, El-Hakimb AE, Abdel-Atyb AM, Alyafa MM (2016) Purification and partial characterization of serine-metallo keratinasefrom a newly isolated Bacillus pumilus NRC21. Biol Int J Biol Macromol 86:189–196

    Article  CAS  Google Scholar 

  • Tsiroulnikov K, Rezai H, Bonch-Osmolovskaya E, Nedkov P, Gousterova A, Cueff V, Godfroy A, Barbier G, Metro F, Chobert JM, Clayette P, Dormont D, Grosclaude J, Haertle T (2004) Hydrolysis of the amyloid prion protein and nonpathogenic meat and bone meal by anaerobic thermophilic prokaryotes and Streptomyces subspecies. J Agric Food Chem 52:6353–6360

    Article  CAS  Google Scholar 

  • Umamaheswari S, Parameswari N, Prasanth AD (2016) Screening of proteolytic activity of dermatophytes on different media. Asian J Sci Technol 7(2):2388–2391

    CAS  Google Scholar 

  • Verma A, Singh H, Anwar MS, Kumar S, Ansari MW, Agrawal S (2016) Production of thermostable organic solvent tolerant keratinolytic protease from Thermoactinomyces sp. RM4: IAA production and plant growth promotion. Front Microbiol 7:1189

    Google Scholar 

  • Villa ALV, Aragao MRS, dos Santos EP, Mazotto AM, Zingali RB, de Souza EP, Vermelho AB (2013) Feather keratin hydrolysates obtained from microbial keratinases: effect on hair fibre. BMC Biotechnol 13:15

    Article  CAS  Google Scholar 

  • Voet D, Voet JG (1995) In: Stiefel J (ed) Biochemistry, 2nd edn. Wiley, New York, pp 154–156

    Google Scholar 

  • Walker ID, Rogers GE (1976) Differentiation in avian keratinocytes. Eur J Biochem 69:329–339. https://doi.org/10.1111/j.1432-1033.1976.tb10917.x

    Article  CAS  Google Scholar 

  • Wang X, Parsons CM (1997) Effect of processing systems on protein quality of feather meal and hog hair meal. Poult Sci 76:491–496

    Article  CAS  Google Scholar 

  • Wawrzkiewicz K, Łobarzewski J, Wolski T (1987) Intracellular keratinase of Trichophyton gallinae. J Med Vet Mycol 25:261–268

    Article  CAS  Google Scholar 

  • Weary PE, Canby CM, Cowley EP (1965) Keratinolytic activity of Microsporum canis and Microsporum gypseum. J Invest Dermatol 44:300–331

    Article  CAS  Google Scholar 

  • Werlang PO, Brandelli A (2005) Characterization of a novel feather-degrading Bacillus sp. strain. Appl Biochem Biotechnol 120:71–80

    Article  CAS  Google Scholar 

  • Williams CM, Richter CS, Mackenzie JM, Shih JCH (1990) Isolation identification and characterization of a feather degrading bacterium. Appl Environ Microbiol 56:1509–1515

    CAS  Google Scholar 

  • Xu S, Reuter T, Gilroyed BH, Dudas S, Graham C, Neumann NF, Balachandran A, Czub S, Belosevic M, Leonard JJ, McAllister TA (2013) Biodegradation of specified risk material and fate of scrapie prions in compost. J Environ Sci Health A Tox Hazard Subst Environ Eng 48:26–36. https://doi.org/10.1080/10934529.2012.707599

    Article  CAS  Google Scholar 

  • Xu H, Shi Z, Reddy N, Yang Y (2014a) Intrinsically water-stable keratin nanoparticles and their in vivo biodistribution for targeted delivery. J Agric Food Chem 62:9145–9150

    Article  CAS  Google Scholar 

  • Xu S, Reuter T, Gilroyed B, Mitchell G, Price L, Dudas S, Braithwaite S, Graham C, Czub S, Leonard J, Balachandran A, Neumann N, Belosevic M, McAllister T (2014b) Biodegradation of prions in compost. Environ Sci Technol 48(12):6909–6918. https://doi.org/10.1021/es500916v

    Article  CAS  Google Scholar 

  • Yamamura S, Morita Y, Hasan Q, Yokoyama K, Tamiya E (2002) Keratin degradation: a cooperative action of two enzymes from Stenotrophomonas sp. Biochem Biophys Res Commun 294(5):1138–1143

    Article  CAS  Google Scholar 

  • Yang Y (2012) Skin-whitening and freckle-dispelling essence and preparation method thereof. Patent Cn102612104

  • Yin XC, Li FY, He YF, Wang Y, Wang RM (2013) Study on effective extraction of chicken feather keratins and their films for controlling drug release. Biomater Sci 1:528–536

    Article  CAS  Google Scholar 

  • Yoshioka M, Miwa T, Horii H, Takata M, Yokoyama T, Nishizawa K, Watanabe M, Shinagawa M, Mirayama Y (2007) Characterization of a proteolytic enzyme derived from a Bacillus strain that effectively degrades prion protein. J Appl Microbiol 102(2):509–515

    Article  CAS  Google Scholar 

  • Yue XY, Zhang B, Jiang DD, Liu YJ, Niu TG (2011) Separation and purification of a keratinase as pesticide against root-knot nematodes. World J Microbiol Biotechnol 27:2147–2153

    Article  CAS  Google Scholar 

  • Zhang RX, Gongc JS, Suc C, Zhangc DD, Tianc H, Douc WF, Lic H, Shic JS, Xua ZH (2016a) Biochemical characterization of a novel surfactant-stable serine keratinase with no collagenase activity from Brevibacillus parabrevis CGMCC 10798. Int J Biol Macromol 93:843–851

    Article  CAS  Google Scholar 

  • Zhang RX, Gong JS, Dou WF, Zhang DD, Zhang YX, Li H, Lu ZM, Shi JS (2016b) Production and characterization of surfactant-stable fungal keratinase from Gibberella intermedia CA3-1 with application potential in detergent industry. Chem Pap 70:1460–1470. https://doi.org/10.1515/chempap-2016-0086

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunita Devi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R., Devi, S. Versatility and commercial status of microbial keratinases: a review. Rev Environ Sci Biotechnol 17, 19–45 (2018). https://doi.org/10.1007/s11157-017-9454-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-017-9454-x

Keywords

Navigation