Skip to main content

Advertisement

Log in

Landfill methane oxidation in soil and bio-based cover systems: a review

  • Reviews
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Mitigation of landfill gases has gained the utmost importance in recent years due to the increase in methane (CH4) emissions from landfills worldwide. This, in turn, can contribute to global warming and climatic changes. The concept of microbially mediated methane oxidation in landfill covers by using methanotrophic microorganisms has been widely adopted as a method to counter the rise in methane emissions. Traditionally, landfill soil covers were used to achieve methane oxidation, thereby reducing methane emissions. Meanwhile, the continual rise of CH4 emissions from landfills and the significant need to and importance of developing a better technology has led researchers to explore different methods to enhance microbial methane oxidation by using organic rich materials such as compost in landfill covers. The development and field application of such bio-based systems, explored by various researches worldwide, eventually led to more widely accepted and better performing cover systems capable of reducing CH4 emissions from landfills. However, the long-term performance of bio-based cover systems were found to be negatively affected by factors such as the material’s ability to self-degrade, causing CH4 to be generated rather than oxidized as well as the greater potential for forming pore-clogging exopolymeric substances. In order to design an effective cover system for landfills, it is essential to have a thorough understanding of the concepts incorporated into methodologies currently in favor along with their pros and cons. This review summarizes previous laboratory and field-scale studies conducted on various soil and bio-based cover systems, along with the modeling mechanisms adopted for quantifying CH4 oxidation rates. Finally, several issues and challenges in developing effective and economical soil and bio-based cover systems are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abichou T, Mahieu K, Yuan L, Chanton J, Hater G (2009) Effects of compost biocovers on gas flow and methane oxidation in a landfill cover. Waste Manag 29:1595–1601

    Article  CAS  Google Scholar 

  • Abichou T, Mahieu K, Chanton J, Romdhane M, Mansouri I (2011) Scaling methane oxidation: from laboratory incubation experiments to landfill cover field conditions. Waste Manag 31:978–986

    Article  CAS  Google Scholar 

  • Achari AG (2010) A comprehensive numerical model simulating gas, heat, and moisture transport in sanitary landfills and methane oxidation in final covers. Environ Model Assess 15:397–410

    Article  Google Scholar 

  • Ait-Benichou S, Jugnia LB, Greer CW, Cabral AR (2009) Methanotrophs and methanotrophic activity in engineered landfill biocovers. Waste Manag 29:2509–2517

    Article  CAS  Google Scholar 

  • Albanna M, Fernandes L (2009) Effects of temperature, moisture content, and fertilizer addition on biological methane oxidation in landfill cover soils. Pract Period Toxic Radioact Waste Manag 13:187–195

    Article  CAS  Google Scholar 

  • Barlaz MA, Chanton JP, Green RB (2009) Controls on landfill gas collection efficiency: instantaneous and lifetime performance. J Air Waste Manag Assoc 59(12):1399–1404

    Article  CAS  Google Scholar 

  • Berger J, Fornés LV, Ott C, Jager J, Wawra B, Zanke U (2005) Methane oxidation in a landfill cover with capillary barrier. Waste Manag 25:369–373

    Google Scholar 

  • Bogner JE, Chanton KA (2011) Seasonal greenhouse gas emissions (methane, carbon dioxide, nitrous oxide) from engineered landfills: daily, intermediate, and final California cover soils. J Environ Qual 40:1010–1020

    Article  CAS  Google Scholar 

  • Bogner JE, Chanton JP, Blake D, Abichou T, Powelson D (2010) Effectiveness of florida landfill biocover for reduction of CH4 and NMHC emissions. Environ Sci Technol 44:1197–1203

    Article  CAS  Google Scholar 

  • Bohn S, Brunke P, Gebert J, Jager J (2011) Improving the aeration of critical fine-grained landfill top cover material by vegetation to increase the microbial methane oxidation efficiency. Waste Manag 31:854–863

    Article  CAS  Google Scholar 

  • Börjesson G, Sundh I, Svensson B (2004) Microbial oxidation of CH4 at different temperatures in landfill cover soils. FEMS Microbiol Ecol 48:305–312

    Article  Google Scholar 

  • Brooks RH, Corey AT (1964) Hydraulic properties of porous media. Colorado State University, Hydrology paper 3, 27 pp

  • Cabral AR, Jugnia JMB (2010) Biocover performance of landfill methane oxidation: experimental results. J Environ Eng 136:785–793

    Article  CAS  Google Scholar 

  • Chanton J, Liptay K (2000) Seasonal vvariation in methane oxidation in a landfill cover soil as determined by an in situ stable isotope technique. Glob Biogeochem Cycles 14(1):51–60

    Article  CAS  Google Scholar 

  • Chanton J, Abichou T, Ford C, Hater G, Green R, Goldsmith D (2011a) Landfill methane oxidation across climate types in the U.S. Environ Sci Technol 45:313–319

    Article  CAS  Google Scholar 

  • Chanton J, Abichou T, Langford C, Spokas K, Hater G, Green R (2011b) Observations on the methane oxidation capacity of landfill soils. Waste Manag 31:914–925

    Article  CAS  Google Scholar 

  • Chi Z, Lu W, Mou Z, Wang H, Long Y, Duan Z (2012) Effect of biocover equipped with a novel passive air diffusion system on microbial methane oxidation and community of methanotrophs. J Air Waste Manage 62(3):278–286

    Article  CAS  Google Scholar 

  • Chiemchaisri WC (2012) Reduction of methane emission from landfill through microbial activities in cover soil: a brief review. Crit Rev Environ Sci Technol 42(4):412–434

    Article  CAS  Google Scholar 

  • Chiemchaisri C, Chiemchaisri W, Kumar S, Hettiaratchi JP (2007) Solid waste characteristics and their relationship to gas production in tropical landfill. Environ Monitor Assess 135:41–48

    Article  CAS  Google Scholar 

  • Chiemchaisri C, Chiemchaisri W, Chittanukul K, Soontornlerdwanich W, Tanthachoon N (2010) Effect of leachate irrigation on methane oxidation in tropical landfill cover soil. J Mater Cycles Waste Manag 12:161–168

    Article  CAS  Google Scholar 

  • De Visscher A, Thomas D, Boecks P, Van Cleemput O (1999) Methane oxidation in simulated landfill cover soil evironments. Environ Sci Technol 33:1854–1859

    Google Scholar 

  • Einola JKM, Karhu AE, Rintala JA (2008) Mechanically–biologically treated municipal solid waste as a support medium for microbial methane oxidation to mitigate landfill greenhouse emissions. Waste Manag 28:97–111

    Article  CAS  Google Scholar 

  • Einola J, Sormunen K, Lensu A, Leiskallio A, Ettala M, Rintala J (2009) Methane oxidation at a surface-sealed boreal landfill. Waste Manag 29:2105–2120

    Google Scholar 

  • Fredenslund AM (2010) Reduction of greenhouse gas emissions from landfills by use of engineered biocovers: full scale studies. Department of Environmental Engineering, Technical University of Denmark

  • Gebert J, Groengroeft A (2006) Passive landfill gas emission—influence of atmospheric pressure and implications for the operation of methane-oxidising biofilters. Waste Manag 26:245–251

    Article  CAS  Google Scholar 

  • Gebert J, Groengroeft A, Miehlich G (2003) Kinetics of microbial landfill methane oxidation in biofilters. Waste Manag 23:609–619

    Article  CAS  Google Scholar 

  • Gebert J, Groengroeft A, Pfeiffer EM (2011a) Relevance of soil physical properties for the microbial oxidation of methane in landfill covers. Soil Biol Biochem 43:1759–1767

    Article  CAS  Google Scholar 

  • Gebert J, Rachor I, Bodrossy L (2009) Composition and activity of methane oxidizing communities in landfill covers. In: Cossu R, Diaz LF, Stegmann R (eds) 12th international waste management and landfill conference, CISA, Sardinia, Italy, p 211

  • Gebert J, Röwer IU, Scharff H, Roncato CD, Cabral AR (2011b) Can soil gas profiles be used to assess microbial CH4 oxidation in landfill covers? Waste Manag 31:987–994

    Article  CAS  Google Scholar 

  • He P, Yang N, Fang W, Lu F, Shao L (2011) Interaction and independence on methane oxidation of landfill cover soil among three impact factors: water, oxygen and ammonium. Front Environ Sci Eng China 5(2):175–185

    Article  CAS  Google Scholar 

  • He R, Wang J, Xia FF, Maoc LJ, Shen DS (2012) Evaluation of methane oxidation activity in waste biocover soil during landfill stabilization. Chemosphere 89:672–679

    Article  CAS  Google Scholar 

  • Hettiarachchi H, Meegoda J, Hettiaratchi P (2009) Effects of gas and moisture on modeling of bioreactor landfill settlement. Waste Manag 29:1018–1025

    Article  CAS  Google Scholar 

  • Hettiaratchi J (2007) New trends in waste management: North American perspective. In: Proceedings of the international conference on sustainable solid waste management, 5–7 September 2007, Chennai, India, pp 9–14

  • Hettiaratchi J, Hurtado O, Hunte C, Hundal J, Smith CC (2007) The calgary biocell: a case study in sustainable solid waste management. In: Proceedings of the international conference on sustainable solid waste management, 5–7 September 2007, Chennai, India, pp 421–428

  • Hilger AL (1999) Exopolysaccharide control of methane oxidation in landfill cover soil. J Environ Eng 125:1113–1123

    Article  CAS  Google Scholar 

  • Hilger H, Humer M (2003) Biotic landfill cover treatments for mitigating methane emissions. Environ Monitor Assess 84:71–84

    Article  CAS  Google Scholar 

  • Hrad M, Huber-Humer M, Reichenauer BW (2012) Design of top covers supporting aerobic in situ stabilization of old landfills—an experimental simulation in lysimeters. Inst Waste Manag 32:2324–2335

    Article  CAS  Google Scholar 

  • Huber-Humer M (2004) Abatement of landfill methane emissions by microbial oxidation in biocovers made of compost. Doctoral Thesis, University of Natural Resources and Applied Life Sciences Vienna, Institute of Waste Management, Vienna, 2004

  • Huber-Humer M, Gebert J, Hilger H (2008) Biotic systems to mitigate landfill methane emissions. Waste Manage Res 26:33–46

    Article  CAS  Google Scholar 

  • Huber-Humer M, Roder S, Lechner P (2009) Approaches to assess biocover performance on landfills. Waste Manag 29:2092–2104

    Article  CAS  Google Scholar 

  • Huber-Humer M, Tintner J, Lechner KB (2011) Scrutinizing compost properties and their impact on methane oxidation efficiency. Waste Manag 31:871–883

    Article  CAS  Google Scholar 

  • Humer M, Lechner P (1999) Alternative approach to the elimination of greenhouse gases from old landfills. Waste Manag Res 17:443–452

    Google Scholar 

  • Humer M, Lechner P (2001a) Design of a landfill cover layer to enhance methane oxidation; results from a two year field investigation. In: Proceedings of SARDINIA 2001—Eighth international waste management and landfill symposium, Cagliari, vol 1, pp 541–550

  • Humer M, Lechner P (2001b) Microbial methane oxidation for the reduction of landfill gas emissions. J Solid Waste Technol Manag 27:146–151

    CAS  Google Scholar 

  • IPCC (2007) Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Jugnia LB, Cabral AR, Greera CW (2008) Biotic methane oxidation within an instrumented experimental landfill cover. Ecol Eng 33:102–109

    Google Scholar 

  • Kamalan H, Sabour M, Shariatmadari N (2011) A review on available landfill gas models. J Environ Sci Technol 4:79–92

    Article  CAS  Google Scholar 

  • Kettunen R, Einola JKM, Rintala J (2006) Landfill methane oxidation in engineered soil columns at low temperature. Water Air Soil Pollut 177:313–334

    Google Scholar 

  • Knightley D, Nedwell DB and Cooper M (1995) Capacity for methane oxidation in landfill cover soils measured in laboratory-scale soil microcosms. Appl Environ Microbiol 61:592–601

    Google Scholar 

  • Kollikkathara N, Feng H, Stern E (2009) A purview of waste management evolution: special emphasis on USA. Waste Manag 29:974–985

    Article  Google Scholar 

  • Lamb DT, Heading S, Bolan N, Naidu R (2012) Use of biosolids for phytocapping of landfill soil. Water Air Soil Pollut 223:2695–2705

    Article  CAS  Google Scholar 

  • Liptay JC (2000) Seasonal variation in methane oxidation in a landfill cover soil as determined by an in situ stable isotope technique. Glob Biogeochem Cycles 14(1):51–60

    Article  Google Scholar 

  • Lou Z, Wang L, Zhao Y (2011) Consuming un-captured methane from landfill using aged refuse bio-cover. Bioresour Technol 102:2328–2332

    Article  CAS  Google Scholar 

  • Lu WJ, Chi ZF, Mou ZS, Long YY, Wang HT, Zhu Y (2011) Can a breathing biocover system enhance methane emission reduction from landfill? J Hazard Mater 191:228–233

    Article  CAS  Google Scholar 

  • Mor S, De Visscher A, Ravindra K, Dahiya RP, Chandra A, Van Cleemput, O (2006) Induction of enhanced methane oxidation in compost: temperature and moisture response. Waste Manag 26:381–388

    Google Scholar 

  • Nikiema J, Brzezinski R, Heitz M (2007) Elimination of methane generated from landfills in biofiltration: a review. Rev Environ Sci Biotechnol 6:261–284

    Google Scholar 

  • Park JW, Shin HC (2001) Surface emission of landfill gas from solid waste landfill. Atmos Environ 35:3445–3451

    Article  CAS  Google Scholar 

  • Park S, Brown KW, Thomas JC (2002) The effect of various environmental and design parameters on methane oxidation in a model biofilter. Waste Manage Res 20:434–444

    Article  CAS  Google Scholar 

  • Park SY, Brown KW, Thomas JC (2004) The use of biofilters to reduce atmosphericmethane emissions from landfills: part I. biofilter design. Water Air Soil Pollut 155:63–85

    Article  CAS  Google Scholar 

  • Park S, Lee I, Cho C, Sung K (2008) Effects of earthworm cast and powdered activated carbon on methane removal capacity of landfill cover soils. Chemosphere 70(6):1117–1123

    Article  CAS  Google Scholar 

  • Park S, Lee CH, Cheong R, Sung RK (2009) Biofiltration for reducing methane emissions from modern sanitary landfills at the low methane generation stage. Water Air Soil Pollut 196:19–27

    Article  CAS  Google Scholar 

  • Park S, Brown KW, Thomas JC, Lee IC, Sung K (2010) Comparison study of methane emissions from landfills with different landfill covers. Environ Earth Sci 60:933–941

    Article  CAS  Google Scholar 

  • Pawlowska M, Stepniewski W (2006) Biochemical reduction of methane emissions from landfills. Environ Eng Sci 23:666–672

    Article  CAS  Google Scholar 

  • Pawlowska M, Rozej A, Stepniewski W (2011) The effect of bed properties on methane removal in an aerated biofilter—model studies. Waste Manag 31:903–913

    Article  CAS  Google Scholar 

  • Pedersen GB (2010) Processes in a compost based landfill biocover; methane emission, transport and oxidation. Department of Environmental Engineering, Technical University of Denmark

  • Pedersen GB, Scheutz C, Kjeldsen P (2011) Availability and properties of materials for the Fakse Landfill biocover. Waste Manag 31:884–894

    Article  CAS  Google Scholar 

  • Peer RL, Thorneloe SA, Epperson DL (1993) A comparison of methods for estimating global methane emissions from landfills. Chemosphere 26:387–400

    Google Scholar 

  • Perdikea K, Mehrotra AK, Hettiaratchi JP (2008) Study of thin biocovers (TBC) for oxidizing uncaptured methane emissions in bioreactor landfills. Waste Manag 28:1364–1374

    Google Scholar 

  • Pokhrel D, Hettiaratchi P, Kumar S (2011) Methane diffusion coefficient in compost and soil-compost mixtures in gas phase biofilter. Chem Eng J 169:200–206

    Google Scholar 

  • Powelson DK, Chanton JP, Abichou T (2007) Methane oxidation in biofilters measured by mass-balance and stable isotope methods. Environ Sci Technol 41:620–625

    Google Scholar 

  • Powelson DK, Chanton J, Abichou T, Morales J (2006) Methane oxidation in water-spreading and compost biofilters. Waste Manag Res 24:528–536

    Article  CAS  Google Scholar 

  • Rachor I, Gebert J, Gröngröft A, Pfeiffer EM (2011) Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials. Waste Manag 31:833–842

    Article  CAS  Google Scholar 

  • Ramirez AA, García-Aguilara BP, Jonesa JP, Heitza M (2012) Improvement of methane biofiltration by the addition of non-ionic surfactants to biofilters packed with inert materials. Process Biochem 47:76–82

    Article  Google Scholar 

  • Roncato CDL, Cabral AR (2012) Evaluation of methane oxidation efficiency of two biocovers: field and laboratory results. J Environ Eng 138:164–173

    Article  CAS  Google Scholar 

  • Rose JL, Mahler CF, Santos Izzo RL (2012) Comparison of the methane oxidation rate in four media. R Bras Ci Solo 36:803–812

    Article  CAS  Google Scholar 

  • Röwer UI, Geck C, Gebert J, Pfeiffer E (2011) Spatial variability of soil gas concentration and methane oxidation capacity in landfill covers. Waste Manag 31:926–934

    Google Scholar 

  • Scheutz C, Mosbæk H, Kjeldsen P (2004) Attenuation of methane and volatile organic compounds in landfill soil covers. J Environ Qual 33:61–71

    Article  CAS  Google Scholar 

  • Scheutz C, Kjeldsen P, Bogner JE, Visscher AD, Gebert J, Hilger HA (2009a) Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Manag 27:409–455

    Article  CAS  Google Scholar 

  • Scheutz C, Pedersen GB, Costa G, Kjeldsen P (2009b) Biodegradation of methane and halocarbons in simulated landfill biocover systems containing compost materials. J Environ Qual 38:1363–1371

    Article  CAS  Google Scholar 

  • Scheutz C, Samuelsson J, Fredenslund AM, Kjeldsen P (2011a) Quantification of multiple methane emission sources at landfills using a double tracer technique. Waste Manag 31:1009–1017

    Article  CAS  Google Scholar 

  • Scheutz C, Fredenslund AM, Chanton J, Pedersen GB, Kjeldsen P (2011b) Mitigation of methane emission from Fakse landfill using a biowindow system. Waste Manag 31:1018–1028

    Article  CAS  Google Scholar 

  • Scheutz C, Pedicone A, Pedersen GB, Kjeldsen P (2011c) Evaluation of respiration in compost landfill biocovers intended for methane oxidation. Waste Manag 21:895–902

    Article  Google Scholar 

  • Schroth M, Eugster W, Gómez K, Gonzalez-Gil G, Niklaus P, Oester P (2012) Above- and below-ground methane fluxes and methanotrophic activity in a landfill-cover soil. Waste Manag 32:879–889

    Article  CAS  Google Scholar 

  • Segel IH (1993) Enzyme kinetics. Wiley, New York

    Google Scholar 

  • Spokas KA, Bogner JE (2011) Limits and dynamics of Ch4 oxidation on landfill cover soils. Waste Manag 31:823–832

    Article  CAS  Google Scholar 

  • Spokas K, Bogner J, Chanton J, Morce M, Aran C, Graff C (2006) Methane mass balance at three landfill sites: what is the efficiency of capture by gas collection systems? Waste Manag 26:516–525

    Article  CAS  Google Scholar 

  • Spokas K, Bogner J, Chanton AJ (2011) A process-based inventory model for landfill CH4 emissions inclusive of seasonal soil microclimate and CH4 oxidation. J Geophys Res 116:G04017

    Google Scholar 

  • Stein VB, Hettiaratchi JPA (2010) Methane oxidation in three Alberta soils: influence of soil parameters and methane flux rates. Environ Technol 22(1):101–111

    Article  Google Scholar 

  • Stern JC, Chanton J, Abichou T, Powelson D, Yuan L, Escoriza S (2007) Use of a biologically active cover to reduce landfill methane emissions and enhance methane oxidation. Waste Manag 27:1248–1258

    Article  CAS  Google Scholar 

  • Tanthachoon N, Chiemchaisri C, Chiemchaisri W, Tudsri S, Kumar S (2008) Methane oxidation in compost-based landfill cover with vegetation during wet and dry conditions in the tropics. J Air Waste Manag Assoc 58:603–612

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (USEPA) (2011) Municipal solid waste generation, recycling, and disposal in the United States: facts and figures for 2010, EPA-530-F-11-005, Solid Waste and Emergency Response (5306P), Washington, DC

  • United States Environmental Protection Agency USEPA (2012) Inventory of U.S. greenhouse gas emissions and sinks: 1990–2010. EPA-430-R-12-001, Washington, DC

  • Wang J, Xia FF, Bai Y, Fan CR, Shen DS, He R (2011) Methane oxidation in landfill waste biocover soil: kinetics and sensitivity to ambient conditions. Waste Manag 31:864–870

    Article  CAS  Google Scholar 

  • Weitz KA, Thorneloe SA, Nishtala SR, Yarkosky S, Zannes M (2002) The impact of municipal solid waste management on greenhouse gas emissions in the United States. J Air Waste Manag Assoc 52:1000–1011

    Article  CAS  Google Scholar 

  • Widory D, Proust E, Bellenfant G, Bour O (2012) Assessing methane oxidation under landfill covers and its contribution to the above atmospheric CO2 levels: the added value of the isotope (δ13C and δ18O CO2; δ13C and δD CH4) approach. Waste Manag 32:1685–1692

    Article  CAS  Google Scholar 

  • Wilshusen JH, Hettiaratchi JPA, Visscherb AD, Saint-Fort R (2004) Methane oxidation and formation of EPS in compost: effect of oxygen concentration. Environ Pollut 129:305–314

    Google Scholar 

  • Yang NL (2011) Response of methanotrophs and methane oxidation on ammonium application in landfill soils. Environ Biotechnol 92:1073–1082

    Article  CAS  Google Scholar 

  • Yuan L, Abichou T, Chanton J, Powelson D, Visscher A (2009) Long-term numerical simulation of methane transport and oxidation in a compost biofilter. Pract Period Hazard, Toxic, Radioact Waste Manag 13:196–202

    Google Scholar 

  • Zhang Y, Zhang H, Jia B, Wang W, Zhu W, Huang T (2012) Landfill CH4 oxidation by mineralized refuse: effects of NH4 content and temperature. Sci Total Environ 426:406–413

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this project is provided by the U.S. National Science Foundation (Grant CMMI #1200799), which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna R. Reddy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadasivam, B.Y., Reddy, K.R. Landfill methane oxidation in soil and bio-based cover systems: a review. Rev Environ Sci Biotechnol 13, 79–107 (2014). https://doi.org/10.1007/s11157-013-9325-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-013-9325-z

Keywords

Navigation