Skip to main content

Advertisement

Log in

Abstract

Many researchers consider efficient harvesting is the major challenge of commercialising micro-algal biofuel. Although micro-algal biomass can be ‘energy rich’, the growth of algae in dilute suspension at around 0.02–0.05 % dry solids poses considerable challenges in achieving a viable energy balance in micro-algal biofuel process operations. Additional challenges of micro-algae harvesting come from the small size of micro-algal cells, the similarity of density of the algal cells to the growth medium, the negative surface charge on the algae and the algal growth rates which require frequent harvesting compared to terrestrial plants. Algae can be harvested by a number of methods; sedimentation, flocculation, flotation, centrifugation and filtration or a combination of any of these. This paper reviews the various methods of harvesting and dewatering micro-algae for the production of biofuel. There appears to be no one method or combination of harvesting methods suited to all micro-algae and harvesting method will have a considerable influence on the design and operation of both upstream and downstream processes in an overall micro-algal biofuel production process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  • Amer L, Adhikari B, Pellegrino J (2011) Technoeconomic analysis of five microalgae-to-biofuels processes of varying complexity. Bioresour Technol 102(20):9350–9359. doi:10.1016/j.biortech.2011.08.010

    Article  CAS  Google Scholar 

  • Bailey JE, Ollis DF (1977) Biochemical engineering fundamentals. McGraw Hill, New York

    Google Scholar 

  • Benemann J, Oswald WJ (1996) Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass. Pittsburgh Energy Technology Centre, Pittsburgh

    Book  Google Scholar 

  • Benemann J, Weissman JC, Koopman BL, Oswald WJ (1977) Energy-production by microbial photosynthesis. Nature 268(5615):19–23

    Article  CAS  Google Scholar 

  • Benemann J, Koopman B, Weissman J, Eisenberg D, Goebel R (1980) Development of microalgae harvesting and high-rate pond technologies in California. In: Shelef G, Soeder CJ (eds) Algae biomass. Elsevier, Amsterdam

    Google Scholar 

  • Bienfang PK (1981) Sinking rates of heterogeneous temperate phytoplankton populations. J Plankton Res 3(2):235–254

    Article  CAS  Google Scholar 

  • Bosma R, van Spronsen WA, Tramper J, Wijffels RH (2003) Ultrasound, a new separation technique to harvest microalgae. J Appl Phycol 15(2–3):143–153. doi:10.1023/a:1023807011027

    Article  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae–a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14(2):557–577. doi:10.1016/j.rser.2009.10.009

    Article  CAS  Google Scholar 

  • Brennan JG, Butters JR, Cowell ND, Lilly AEV (1969) Food engineering operation. Elsevier, London

    Google Scholar 

  • Choi SK, Lee JY, Kwon DY, Cho KJ (2006) Settling characteristics of problem algae in the water treatment process. Water Sci Technol 53(7):113–119. doi:10.2166/wst.2006.214

    Article  CAS  Google Scholar 

  • Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29(6):686–702. doi:10.1016/j.biotechadv.2011.05.015

    Article  CAS  Google Scholar 

  • Cole TM, Wells SA (1995) CE-QUAL-W2. A two dimensional, laterally averaged, hydrodynamic & water quality model, version 3.5: user manual. US Army Corps Engineers, Vicksburg

    Google Scholar 

  • Collet P, Hélias A, Lardon L, Ras M, Goy R-A, Steyer J-P (2011) Life-cycle assessment of microalgae culture coupled to biogas production. Bioresour Technol 102(1):207–214. doi:10.1016/j.biortech.2010.06.154

    Article  CAS  Google Scholar 

  • Danquah MK, Ang L, Uduman N, Moheimani N, Fordea GM (2009) Dewatering of microalgal culture for biodiesel production: exploring polymer flocculation and tangential flow filtration. J Chem Technol Biotechnol 84(7):1078–1083. doi:10.1002/jctb.2137

    Article  CAS  Google Scholar 

  • DEFRA (2010) Guidelines to Defra/DECC’s GHG conversion factors for company reporting. Produced by AEA for the Department of Energy and Climate Change (DECC) and the Department for Environment, Food and Rural Affairs (Defra), London

  • Edzwald JK (1993) Algae, bubbles, coagulants, and dissolved air flotation. Water Sci Technol 27(10):67–81

    CAS  Google Scholar 

  • Elliott A (2006) Substitution of ferric chloride with Magnafloc 1597 in autothermal thermophyllic aerated digestion (ATAD) sludge de-watering processes. Paper presented at the 69th Annual Water Industry Engineers and Operators’ Conference, Bendingo, Australia

  • Ferrell J, Sarisky-Reed V (2010) National algal biofuels technology roadmap. A technology roadmap resulting from the National Algal Biofuels Workshop U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program. Available online at http://www1.eere.energy.gov/biomass/pdfs/algal_biofuels_roadmap.pdf, Washington

  • Goh A (1984) Production of microalgae using pig waste as a substrate. In: Barclay WR, McIntosh RP (eds) Algal biomass technologies. J Cramer, Colorado

  • Gouveia L (2011) Microalgae as a feedstock for biofuels. Springer, Heidelberg

    Book  Google Scholar 

  • Granados MR, Acién FG, Gómez C, Fernández-Sevilla JM, Molina Grima E (2012) Evaluation of flocculants for the recovery of freshwater microalgae. Bioresour Technol

  • Greenwell HC, Laurens LML, Shields RJ, Lovitt RW, Flynn KJ (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface 7(46):703–726. doi:10.1098/rsif.2009.0322

    Article  CAS  Google Scholar 

  • Hanotu J, Bandulasena HCH, Zimmerman WB (2012) Microflotation performance for algal separation. Biotechnol Bioeng. doi:10.1002/bit.24449

    Google Scholar 

  • Harith ZT, Yusoff FM, Mohamed MS, Din MSM, Ariff AB (2009) Effect of different flocculants on the flocculation performance of microalgae, Chaetoceros calcitrans, cells. Afr J Biotechnol 8(21):5971–5978

    CAS  Google Scholar 

  • Heaven S, Milledge J, Zhang Y (2011) Comments on ‘Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable’. Biotechnol Adv 29(1):164–167. doi:10.1016/j.biotechadv.2010.10.005

    Article  CAS  Google Scholar 

  • Hendricks D (2010) Fundamentals of water treatment unit processes: physical, chemical, and biological. CRC Press, Boca Raton

    Google Scholar 

  • Jago CF, Kennaway GM, Novarino G, Jones SE (2007) Size and settling velocity of suspended flocs during a Phaeocystis bloom in the tidally stirred Irish Sea, NW European shelf. Marine Ecol Prog Ser 345:51–62. doi:10.3354/meps07006

    Article  CAS  Google Scholar 

  • Knuckey RM, Brown MR, Robert R, Frampton DMF (2006) Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquac Eng 35(3):300–313. doi:10.1016/j.aquaeng.2006.04.001

    Article  Google Scholar 

  • Kromkamp J, Walsby AE (1990) A computer-model of buoyancy and vertical migration in cyanobacteria. J Plankton Res 12(1):161–183

    Article  Google Scholar 

  • Lee A, Lewis D, Ashman P (2009) Microbial flocculation, a potentially low-cost harvesting technique for marine microalgae for the production of biodiesel. J Appl Phycol 21(5):559–567. doi:10.1007/s10811-008-9391-8

    Article  CAS  Google Scholar 

  • Lundquist TJ, Woertz IC, Quinn NWT, Benemann JR (2010) A realistic technology and engineering assessment of algae biofuel production. Energy Biosciences Inst, Berkeley

    Google Scholar 

  • Mannweiler K, Hoare M (1992) The scale-down of an industrial disk stack centrifuge. Bioprocess Eng 8(1–2):19–25. doi:10.1007/bf00369259

    Article  CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14(1):217–232. doi:10.1016/j.rser.2009.07.020

    Article  CAS  Google Scholar 

  • Mayhew YR, Rogers GFC (1972) Thermodynamic and transport properties of fluids. Blackwell, Oxford

    Google Scholar 

  • Medina M, Neis U (2007) Symbiotic algal bacterial wastewater treatment: effect of food to microorganism ratio and hydraulic retention time on the process performance. Water Sci Technol 55(11):165–171. doi:10.2166/wst.2007.351

    Article  CAS  Google Scholar 

  • Milledge JJ (2010a) The challenge of algal fuel: economic processing of the entire algal biomass. Condens Matter Mater Eng Newsl 1(6):4–6

    Google Scholar 

  • Milledge JJ (2010b) The potential yield of microalgal oil. Biofuels Int 4(2):44–45

    Google Scholar 

  • Milledge JJ, Heaven S (2011) Disc stack centrifugation separation and cell disruption of microalgae: a technical note. Environ Nat Resour Res 1(1):17–24. doi:10.5539/enrr.v1n1p17

    Google Scholar 

  • Millero FJ, Lepple FK (1973) The density and expansibility of artificial seawater solutions from 0 to 40 °C and 0 to 21[per mille sign] chlorinity. Mar Chem 1(2):89–104. doi:10.1016/0304-4203(73)90009-1

    Article  CAS  Google Scholar 

  • Mohn F (1988) Harvesting of micro-algal biomass. In: Borowitzka LJ, Borowitzka MA (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge

    Google Scholar 

  • Molina Grima E, Belarbi E-H, Acien-Fernandez FG, Robles-Medina A, Yusuf C (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20(7–8):491–515

    Article  CAS  Google Scholar 

  • Moraine R, Shelef G, Meydan A, Levi A (1979) Algal single cell protein from wastewater-treatment and renovation process. Biotechnol Bioeng 21(7):1191–1207

    Article  CAS  Google Scholar 

  • Nurdogan Y, Oswald WJ (1996) Tube settling of high-rate pond algae. Water Sci Technol 33(7):229–241

    Article  CAS  Google Scholar 

  • Olguín EJ (2003) Phycoremediation: key issues for cost-effective nutrient removal processes. Biotechnol Adv 22(1–2):81–91. doi:10.1016/s0734-9750(03)00130-7

    Article  Google Scholar 

  • Origin Oil (2010) Algae harvesting, dewatering and extraction. Paper presented at the World Biofuel Markets, Amsterdam

  • Oswald WJ (1988) Large-scale algal culture systems (engineering aspects). In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge

    Google Scholar 

  • Packer M (2009) Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy. Energy Policy 37(9):3428–3437. doi:10.1016/j.enpol.2008.12.025

    Article  Google Scholar 

  • Papazi A, Makridis P, Divanach P (2010) Harvesting chlorella minutissima using cell coagulants. J Appl Phycol 22(3):349–355. doi:10.1007/s10811-009-9465-2

    Article  CAS  Google Scholar 

  • Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102(1, Sp. Iss. SI):35–42. doi:10.1016/j.biortech.2010.06.158

  • Peperzak L, Colijn F, Koeman R, Gieskes WWC, Joordens JCA (2003) Phytoplankton sinking rates in the Rhine region of freshwater influence. J Plankton Res 25(4):365–383

    Article  Google Scholar 

  • Perry RH, Chilton CH (1973) Chemical engineers’ handbook, 5th edn. McGraw Hill, Tokyo

    Google Scholar 

  • Poelman E, De Pauw N, Jeurissen B (1997) Potential of electrolytic flocculation for recovery of micro-algae. Resour Conserv Recycl 19(1):1–10. doi:10.1016/s0921-3449(96)01156-1

    Article  Google Scholar 

  • Purchas DB (1981) Solid-liquid separation technology. Uplands Press, London

    Google Scholar 

  • Pushparaj B, Pelosi E, Torzillo G, Materassi R (1993) Microbial biomass recovery using a synthetic cationic polymer. Bioresour Technol 43(1):59–62. doi:10.1016/0960-8524(93)90083-n

    Article  CAS  Google Scholar 

  • Ras M, Lardon L, Bruno S, Bernet N, Steyer J-P (2011) Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris. Bioresour Technol 102(1):200–206. doi:10.1016/j.biortech.2010.06.146

    Article  CAS  Google Scholar 

  • Reynolds CS (1984) The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge

    Google Scholar 

  • Richardson JF, Harker JH, Backhurst JR (2002) Coulson & Richardson’s Chemical Engineering; Volume 2, 5th edition, Particle Technology & Separation Processes. Elsevier Butterworth-Heinemann, Oxford

  • Rossi N, Jaouen O, Legentilhomme P, Petit I (2004) Harvesting of cyanobacterium Arthrospira platensis using organic filtration membranes. Food Bioprod Process 82(C3):244–250. doi:10.1205/fbio.82.3.244.44177

    Article  Google Scholar 

  • Sawayama S, Minowa T, Yokoyama SY (1999) Possibility of renewable energy production and CO2 mitigation by thermochemical liquefaction of microalgae. Biomass Bioenergy 17(1):33–39. doi:10.1016/s0961-9534(99)00019-7

    Article  CAS  Google Scholar 

  • Schenk P, Thomas-Hall S, Stephens E, Marx U, Mussgnug J, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1(1):20–43. doi:10.1007/s12155-008-9008-8

    Article  Google Scholar 

  • Schlarb-Ridley B (2011) Algal research in the UK. A report for BBSRC. BBSRC

  • Schlesinger A, Eisenstadt D, Bar-Gil A, Carmely H, Einbinder S, Gressel J (2012) Inexpensive non-toxic flocculation of microalgae contradicts theories; overcoming a major hurdle to bulk algal production. Biotechnol Adv (0). doi:10.1016/j.biotechadv.2012.01.011

  • Shelef G, Sukenik A, Green M (1984a) Microalgae harvesting and processing: a literature review. Solar Energy Research Institute, Golden

    Book  Google Scholar 

  • Shelef G, Sukenik A, Green M (1984b) Separation and harvesting of marine microalgal biomass. In: Barclay WR, McIntosh RP (eds) Algal biomass technology. J. Cramer, Colorado

  • Shen Y, Yuan W, Pei ZJ, Wu Q, Mao E (2009) Microalgae mass production methods. Trans ASABE 52(4):1275–1287

    Google Scholar 

  • Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27(4):409–416. doi:10.1016/j.biotechadv.2009.03.001

    Article  CAS  Google Scholar 

  • Singh A, Nigam PS, Murphy JD (2011) Mechanism and challenges in commercialisation of algal biofuels. Bioresour Technol 102(1):26–34. doi:10.1016/j.biortech.2010.06.057

    Article  CAS  Google Scholar 

  • Şirin S, Trobajo R, Ibanez C, Salvadó J (2012) Harvesting the microalgae; Phaeodactylum tricornutum with polyaluminum chloride, aluminium sulphate, chitosan and alkalinity-induced flocculation. J Appl Phycol 1–14. doi:10.1007/s10811-011-9736-6

  • Smayda TJ (1970) The suspension and sinking of phytoplankton in the sea. In: Barnes H (ed) Oceanography and marine biology annual review, vol 8. George Allen & Unwin, London, pp 353–414

    Google Scholar 

  • Sournia A (ed) (1978) Phytoplankton manual. UNESCO, Paris

    Google Scholar 

  • Speight J (2005) Lange’s handbook of chemistry, 16th edn. McGraw-Hill, New York

    Google Scholar 

  • Srinivas T (2008) Environmental biotechnology. New Age International, New Delhi

    Google Scholar 

  • Stephenson AL, Kazamia E, Dennis JS, Howe CJ, Scott SA, Smith AG (2010) Life-cycle assessment of potential algal biodiesel production in the United Kingdom: a comparison of raceways and air-lift tubular bioreactors. Energy Fuels 24(7):4062–4077. doi:10.1021/ef1003123

    Article  CAS  Google Scholar 

  • Sukenik A, Bilanovic D, Shelef G (1988) Flocculation of microalgae in brackish and sea waters. Biomass 15(3):187–199. doi:10.1016/0144-4565(88)90084-4

    Article  Google Scholar 

  • Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sustain Energy 2(1):012701–012715

    Article  Google Scholar 

  • Van den Hende S, Vervaeren H, Desmet S, Boon N (2011) Bioflocculation of microalgae and bacteria combined with flue gas to improve sewage treatment. New Biotechnol 29(1):23–31

    Article  Google Scholar 

  • Van Lerland ET, Peperzak L (1984) Separation of marine seston and density determination of marine diatoms by density gradient centrifugation. J Plankton Res 6(1):29–44. doi:10.1093/plankt/6.1.29

    Article  Google Scholar 

  • Vandamme D, Foubert I, Meesschaert B, Muylaert K (2010) Flocculation of microalgae using cationic starch. J Appl Phycol 22(4):525–530. doi:10.1007/s10811-009-9488-8

    Article  Google Scholar 

  • Vandamme D, Pontes SCV, Goiris K, Foubert I, Pinoy LJJ, Muylaert K (2011) Evaluation of electro-coagulation-flocculation for harvesting marine and freshwater microalgae. Biotechnol Bioeng 108(10):2320–2329. doi:10.1002/bit.23199

    Article  CAS  Google Scholar 

  • Veldhuis MJW, Fuhr F, Boon JP, Ten Hallers-Tjabbers C (2006) Treatment of ballast water; how to test a system with a modular concept? Environ Technol 27(8):909–921. doi:10.1080/09593332708618701

    Article  CAS  Google Scholar 

  • Verma NM, Mehrotra S, Shukla A, Mishra BN (2010) Prospective of biodiesel production utilizing microalgae as the cell factories: a comprehensive discussion. Afr J Biotechnol 9(10):1402–1411

    CAS  Google Scholar 

  • Waite AM, Thompson PA, Harrison PJ (1992) Does energy control the sinking rates of marine diatoms. Limnol Oceanogr 37(3):468–477

    Article  Google Scholar 

  • Weast RC (ed) (1985) Handbook of chemistry and physics. CRC, Boca Raton

    Google Scholar 

  • Zamalloa C, Vulsteke E, Albrecht J, Verstraete W (2011) The techno-economic potential of renewable energy through the anaerobic digestion of microalgae. Bioresour Technol 102(2):1149–1158. doi:10.1016/j.biortech.2010.09.017

    Article  CAS  Google Scholar 

  • Zimmerman WB, Hewakandamby BN, Tesar V, Bandulasena HCH, Omotowa OA (2009) On the design and simulation of an airlift loop bioreactor with microbubble generation by fluidic oscillation. Food Bioprod Process 87(3):215–227. doi:10.1016/j.fbp.2009.03.006

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the EU FP7 ALL-GAS project (268208).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Milledge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milledge, J.J., Heaven, S. A review of the harvesting of micro-algae for biofuel production. Rev Environ Sci Biotechnol 12, 165–178 (2013). https://doi.org/10.1007/s11157-012-9301-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-012-9301-z

Keywords

Navigation