Skip to main content

Advertisement

Log in

Current perspectives of oleic acid: Regulation of molecular pathways in mitochondrial and endothelial functioning against insulin resistance and diabetes

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Insulin resistance (IR) and type 2 diabetes mellitus (T2DM) is a leading cause of deaths due to metabolic disorders in recent years. Molecular mechanisms involved in the initiation and development of IR and T2DM are multiples. The major factors include mitochondrial dysfunction which may cause incomplete fatty acid oxidation (FAO). Oleic acid upregulates the expression of genes causing FAO by deacetylation of PGC1α by PKA-dependent activation of SIRT1-PGC1α complex. Another potent factor for the development of IR and T2DM is endothelial dysfunction as damaged endothelium causes increased release of inflammatory mediators such as TNF-α, IL-6, IL-1β, sVCAM, sICAM, E-selectin and other proinflammatory cytokines. While, on the other hand, oleic acid has the ability to regulate E-selectin, and sICAM expression. Rest of the risk factors may include inflammation, β-cell dysfunction, oxidative stress, hormonal imbalance, apoptosis, and enzyme dysregulation. Here, we have highlighted how oleic acid regulates underlying causatives factors and hence, keeps surpassing effect in prevention and treatment of IR and T2DM. However, the percentage contribution of these factors in combating IR and ultimately averting T2DM is still debatable. Thus, because of its exceptional protective effect, it can be considered as an improved therapeutic agent in prophylaxis and/or treatment of IR and T2DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Neuenschwander M, Ballon A, Weber KS, Norat T, Aune D, Schwingshackl L, et al. Role of diet in type 2 diabetes incidence: umbrella review of meta-analyses of prospective observational studies. BMJ. 2019;366:l2368.

    PubMed  PubMed Central  Google Scholar 

  2. Yaribeygi H, Farrokhi FR, Butler AE, Sahebkar A. Insulin resistance: review of the underlying molecular mechanisms. J Cell Physiol. 2019;234(6):8152–61.

    CAS  PubMed  Google Scholar 

  3. Hallberg SJ, Gershuni VM, Hazbun TL, Athinarayanan SJ. Reversing type 2 diabetes: a narrative review of the evidence. Nutrients. 2019;11(4):766.

    CAS  PubMed Central  Google Scholar 

  4. Liu J, Liu Z. Muscle insulin resistance and the inflamed microvasculature: fire from within. Int J Mol Sci. 2019;20(3):562.

    CAS  PubMed Central  Google Scholar 

  5. Ekpenyon CE. Relationship between insulin resistance and metabolic syndrome clusters: current knowledge. Acta Sci Med Sci. 2019;3(3):99–104.

    Google Scholar 

  6. Ingelfinger JR, Rosen CJ. Clinical credence - SGLT2 inhibitors, diabetes, and chronic kidney disease. N Engl J Med. 2019;380(24):2371–3.

  7. Arsic A, Stojanovic A, Mikic M. Oleic acid-health benefits and status in plasma phospholipids in the Serbian population. Serbian J Exp Clin Res. 2019;20(2):3–8.

    CAS  Google Scholar 

  8. Bowen KJ, Kris-Etherton PM, West SG, Fleming JA, Connelly PW, Lamarche B, et al. Diets enriched with conventional or high-oleic acid canola oils lower Atherogenic lipids and lipoproteins compared to a diet with a Western fatty acid profile in adults with central adiposity. J Nutr. 2019;149(3):471–8.

    PubMed  PubMed Central  Google Scholar 

  9. Gonçalves-de-Albuquerque CF, Medeiros-de-Moraes IM, de Jesus Oliveira FM, Burth P, Bozza PT, Faria MVC, et al. Omega-9 oleic acid induces fatty acid oxidation and decreases organ dysfunction and mortality in experimental sepsis. PLoS One. 2016;11(4):e0153607.

    PubMed  PubMed Central  Google Scholar 

  10. Lim J-H, Gerhart-Hines Z, Dominy JE, Lee Y, Kim S, Tabata M, et al. Oleic acid stimulates complete oxidation of fatty acids through protein kinase A-dependent activation of SIRT1-PGC1α complex. J Biol Chem. 2013;288(10):7117–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Naughton S, Hanson E, Mathai M, McAinch A. The acute effect of oleic-or linoleic acid-containing meals on appetite and metabolic markers; a pilot study in overweight or obese individuals. Nutrients. 2018;10(10):1376.

    PubMed Central  Google Scholar 

  12. Nemecz M, Constantin A, Dumitrescu M, Alexandru N, Filippi A, Tanko G, et al. The distinct effects of Palmitic and oleic acid on pancreatic Beta cell function: the elucidation of associated mechanisms and effector molecules. Front Pharmacol. 2018;9:1554.

    CAS  PubMed  Google Scholar 

  13. Melo HM, Santos LE, Ferreira ST. Diet-derived fatty acids, brain inflammation, and mental health. Front Neurosci. 2019;13.

  14. Scoditti E, Massaro M, Carluccio MA, Pellegrino M, Wabitsch M, Calabriso N, et al. Additive regulation of adiponectin expression by the mediterranean diet olive oil components oleic acid and hydroxytyrosol in human adipocytes. PLoS One. 2015;10(6):e0128218.

    PubMed  PubMed Central  Google Scholar 

  15. Chen X, Stein TP, Steer RA, Scholl TO. Individual free fatty acids have unique associations with inflammatory biomarkers, insulin resistance and insulin secretion in healthy and gestational diabetic pregnant women. BMJ Open Diabetes Res Care. 2019;7(1):e000632.

    PubMed  PubMed Central  Google Scholar 

  16. Arab K, Rossary A, Soulere L, Steghens JP. Conjugated linoleic acid, unlike other unsaturated fatty acids, strongly induces glutathione synthesis without any lipoperoxidation. Br J Nutr. 2006;96(5):811–9.

    CAS  PubMed  Google Scholar 

  17. Pinti MV, Fink GK, Hathaway QA, Durr AJ, Kunovac A, Hollander JM. Mitochondrial dysfunction in type 2 diabetes mellitus: an organ-based analysis. Am J Physiol Endocrinol Metab. 2019;316(2):E268–E85.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim J-A, Wei Y, Sowers JR. Role of mitochondrial dysfunction in insulin resistance. Circ Res. 2008;102(4):401–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sergi D, Naumovski NN, Heilbronn LHK, Abeywardena M, O'Callaghan N, Lionetti L, et al. Mitochondrial (Dys) function and insulin resistance: from pathophysiological molecular mechanisms to the impact of diet. Front Physiol. 2019;10:532.

    PubMed  PubMed Central  Google Scholar 

  20. Coll T, Eyre E, Rodríguez-Calvo R, Palomer X, Sánchez RM, Merlos M, et al. Oleate reverses palmitate-induced insulin resistance and inflammation in skeletal muscle cells. J Biol Chem. 2008;283(17):11107–16.

    CAS  PubMed  Google Scholar 

  21. Scarpulla RC. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim Biophys Acta. 2011;1813(7):1269–78.

    CAS  PubMed  Google Scholar 

  22. Hu W, Ross J, Geng T, Brice SE, Cowart LA. Differential regulation of dihydroceramide desaturase by palmitate versus monounsaturated fatty acids: implications for insulin resistance. J Biol Chem. 2011;286(19):16596–605.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Herrero L, Rubí B, Sebastián D, Serra D, Asins G, Maechler P, et al. Alteration of the malonyl-CoA/carnitine palmitoyltransferase I interaction in the β-cell impairs glucose-induced insulin secretion. Diabetes. 2005;54(2):462–71.

    CAS  PubMed  Google Scholar 

  24. Zang Y, Wang T, Xie W, Wang-Fischer YL, Getty L, Han J, et al. Regulation of acetyl CoA carboxylase and carnitine palmitoyl transferase-1 in rat adipocytes. Obes Res. 2005;13(9):1530–9.

    CAS  PubMed  Google Scholar 

  25. Priore P, Gnoni A, Natali F, Testini M, Gnoni GV, Siculella L, et al. Oleic acid and hydroxytyrosol inhibit cholesterol and fatty acid synthesis in C6 glioma cells. Oxidative Med Cell Longev. 2017;2017:9076052.

    Google Scholar 

  26. Pierelli G, Stanzione R, Forte M, Migliarino S, Perelli M, Volpe M, et al. Uncoupling protein 2: a key player and a potential therapeutic target in vascular diseases. Oxidative Med Cell Longev. 2017;2017:7348372.

    Google Scholar 

  27. Teshima Y, Akao M, Jones SP, Marbán E. Uncoupling protein-2 overexpression inhibits mitochondrial death pathway in cardiomyocytes. Circ Res. 2003;93(3):192–200.

    CAS  PubMed  Google Scholar 

  28. Krauss S, Zhang CY, Lowell BB. The mitochondrial uncoupling-protein homologues. Nat Rev Mol Cell Biol. 2005;6(3):248–61.

    CAS  PubMed  Google Scholar 

  29. Pi J, Collins S. Reactive oxygen species and uncoupling protein 2 in pancreatic beta-cell function. Diabetes Obes Metab. 2010;12(Suppl 2):141–8.

    CAS  PubMed  Google Scholar 

  30. Medvedev AV, Robidoux J, Bai X, Cao W, Floering LM, Daniel KW, et al. Regulation of the uncoupling protein-2 gene in INS-1 beta-cells by oleic acid. J Biol Chem. 2002;277(45):42639–44.

    CAS  PubMed  Google Scholar 

  31. Šrámek J, Němcová-Fürstová V, Pavlíková N, Kovář J. Effect of saturated stearic acid on MAP kinase and ER stress signaling pathways during apoptosis induction in human pancreatic β-cells is inhibited by unsaturated oleic acid. Int J Mol Sci. 2017;18(11):2313.

    PubMed Central  Google Scholar 

  32. Cefalu WT. Inflammation, insulin resistance, and type 2 diabetes: back to the future? Diabetes. 2009;58(2):307–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Esser N, Paquot N, Scheen AJ. Anti-inflammatory agents to treat or prevent type 2 diabetes, metabolic syndrome and cardiovascular disease. Expert Opin Investig Drugs. 2015;24(3):283–307.

    CAS  PubMed  Google Scholar 

  34. Wieser V, Moschen AR, Tilg H. Inflammation, cytokines and insulin resistance: a clinical perspective. Arch Immunol Ther Exp. 2013;61(2):119–25.

    CAS  Google Scholar 

  35. Bai Y, Sun Q. Macrophage recruitment in obese adipose tissue. Obes Rev. 2015;16(2):127–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kraakman MJ, Murphy AJ, Jandeleit-Dahm K, Kammoun HL. Macrophage polarization in obesity and type 2 diabetes: weighing down our understanding of macrophage function? Front Immunol. 2014;5:470.

    PubMed  PubMed Central  Google Scholar 

  37. Camell C, Smith CW. Dietary oleic acid increases m2 macrophages in the mesenteric adipose tissue. PLoS One. 2013;8(9):e75147.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Mandavia C, Sowers JR. Phosphoprotein phosphatase PP2A regulation of insulin receptor substrate 1 and insulin metabolic signaling. Cardiorenal Med. 2012;2(4):308–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Nardi F, Lipina C, Magill D, Hassan RH, Hajduch E, Gray A, et al. Enhanced insulin sensitivity associated with provision of mono and polyunsaturated fatty acids in skeletal muscle cells involves counter modulation of PP2A. PLoS One. 2014;9(3):e92255.

    PubMed  PubMed Central  Google Scholar 

  40. Li J, Song J, Li X, Rock SB, Sinner HF, Weiss HL, et al. FFAR4 is involved in regulation of neurotensin release from neuroendocrine cells and male C57BL/6 mice. Endocrinology. 2018;159(8):2939–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Houthuijzen JM. For better or worse: FFAR1 and FFAR4 signaling in cancer and diabetes. Mol Pharmacol. 2016;90(6):738–43.

    CAS  PubMed  Google Scholar 

  42. Kebede MA, Alquier T, Latour MG, Poitout V. Lipid receptors and islet function: therapeutic implications? Diabetes Obes Metab. 2009;11(Suppl 4):10–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Morgan NG, Dhayal S. G-protein coupled receptors mediating long chain fatty acid signalling in the pancreatic beta-cell. Biochem Pharmacol. 2009;78(12):1419–27.

    CAS  PubMed  Google Scholar 

  44. Rogers K, Davis D, Kurjiaka D. Role of the free fatty acid 4 receptor in endothelial cell responses to oleic acid. FASEB J. 2017;31(1_supplement):lb763-lb.

    Google Scholar 

  45. Bloemer J, Pinky PD, Govindarajulu M, Hong H, Judd R, Amin RH, et al. Role of adiponectin in central nervous system disorders. Neural Plast. 2018;2018.

  46. Kawano J, Arora R. The role of adiponectin in obesity, diabetes, and cardiovascular disease. J Cardiometab Syndr. 2009;4(1):44–9.

    PubMed  Google Scholar 

  47. Patel S, Hoehn K, Lawrence R, Sawbridge L, Talbot N, Tomsig J, et al. Overexpression of the adiponectin receptor AdipoR1 in rat skeletal muscle amplifies local insulin sensitivity. Endocrinology. 2012;153(11):5231–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Deng G, Long Y, Yu YR, Li MR. Adiponectin directly improves endothelial dysfunction in obese rats through the AMPK-eNOS Pathway. Int J Obes. 2010;34(1):165–71.

    CAS  Google Scholar 

  49. Civitarese AE, Ukropcova B, Carling S, Hulver M, DeFronzo RA, Mandarino L, et al. Role of adiponectin in human skeletal muscle bioenergetics. Cell Metab. 2006;4(1):75–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Vinciguerra M, Sgroi A, Veyrat-Durebex C, Rubbia-Brandt L, Buhler LH, Foti M. Unsaturated fatty acids inhibit the expression of tumor suppressor phosphatase and tensin homolog (PTEN) via microRNA-21 up-regulation in hepatocytes. Hepatology. 2009;49(4):1176–84.

    CAS  PubMed  Google Scholar 

  51. Janus A, Szahidewicz-Krupska E, Mazur G, Doroszko A. Insulin resistance and endothelial dysfunction constitute a common therapeutic target in cardiometabolic disorders. Mediat Inflamm. 2016;2016:3634948.

    CAS  Google Scholar 

  52. D'Oria R, Laviola L, Giorgino F, Unfer V, Bettocchi S, Scioscia M. PKB/Akt and MAPK/ERK phosphorylation is highly induced by inositols: novel potential insights in endothelial dysfunction in preeclampsia. Pregnancy Hypertens. 2017;10:107–12.

    PubMed  Google Scholar 

  53. Akash MSH, Rehman K, Liaqat A. Tumor necrosis factor-alpha: role in development of insulin resistance and pathogenesis of type 2 diabetes mellitus. J Cell Biochem. 2018;119(1):105–10.

    CAS  PubMed  Google Scholar 

  54. Medeiros-de-Moraes IM, Gonçalves-de-Albuquerque CF, Kurz AR, Oliveira FM, Abreu VHP, Torres RC, et al. Omega-9 oleic acid, the main compound of olive oil, mitigates inflammation during experimental sepsis. Oxidative Med Cell Longev. 2018;2018.

  55. Fichtlscherer S, Breuer S, Heeschen C, Dimmeler S, Zeiher AM. Interleukin-10 serum levels and systemic endothelial vasoreactivity in patients with coronary artery disease. J Am Coll Cardiol. 2004;44(1):44–9.

    CAS  PubMed  Google Scholar 

  56. Powell LA, Flood A, Jewhurst V, Owens D. Effects of oleic versus linoleic acids on adhesion molecule expression in glucose-treated vascular endothelial cells. Diabetes. 2005;54:A188.

    Google Scholar 

  57. Sproston NR, Ashworth JJ. Role of C-reactive protein at sites of inflammation and infection. Front Immunol. 2018;9:754.

    PubMed  PubMed Central  Google Scholar 

  58. Doi Y, Kiyohara Y, Kubo M, Tanizaki Y, Okubo K, Ninomiya T, et al. Relationship between C-reactive protein and glucose levels in community-dwelling subjects without diabetes: the Hisayama study. Diabetes Care. 2005;28(5):1211–3.

    CAS  PubMed  Google Scholar 

  59. Mugabo Y, Li L, Renier G. The connection between C-reactive protein (CRP) and diabetic vasculopathy. Focus on preclinical findings. Curr Diabetes Rev. 2010;6(1):27–34.

    CAS  PubMed  Google Scholar 

  60. Kusche-Vihrog K, Urbanova K, Blanqué A, Wilhelmi M, Schillers H, Kliche K, et al. C-reactive protein makes human endothelium stiff and tight. Hypertension. 2011;57(2):231–7.

    CAS  PubMed  Google Scholar 

  61. Carrero JJ, Fonollá J, Marti JL, Jiménez J, Boza JJ, López-Huertas E. Intake of fish oil, oleic acid, folic acid, and vitamins B-6 and E for 1 year decreases plasma C-reactive protein and reduces coronary heart disease risk factors in male patients in a cardiac rehabilitation program. J Nutr. 2007;137(2):384–90.

    CAS  PubMed  Google Scholar 

  62. Ala OA, Akintunde AA, Ikem RT, Kolawole BA, Ala OO, Adedeji T. Association between insulin resistance and total plasma homocysteine levels in type 2 diabetes mellitus patients in south West Nigeria. Diabetes Metab Syndr. 2017;11:S803–S9.

    PubMed  Google Scholar 

  63. Tripathi M, Zhang CW, Singh BK, Sinha RA, Moe KT, DeSilva DA, et al. Hyperhomocysteinemia causes ER stress and impaired autophagy that is reversed by vitamin B supplementation. Cell Death Dis. 2016;7(12):e2513.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Shpilberg Y, Beaudry JL, D’Souza A, Campbell JE, Peckett A, Riddell MC. A rodent model of rapid-onset diabetes induced by glucocorticoids and high-fat feeding. Dis Model Mech. 2012;5(5):671–80.

    CAS  PubMed  Google Scholar 

  65. Verhoeven F, Prati C, Maguin-Gaté K, Wendling D, Demougeot C. Glucocorticoids and endothelial function in inflammatory diseases: focus on rheumatoid arthritis. Arthritis Res Ther. 2016;18(1):258.

    PubMed  PubMed Central  Google Scholar 

  66. Bodnaruc AM, Prud’homme D, Blanchet R, Giroux I. Nutritional modulation of endogenous glucagon-like peptide-1 secretion: a review. Nutr Metab. 2016;13(1):92.

    Google Scholar 

  67. Andersen A, Lund A, Knop FK, Vilsbøll T. Glucagon-like peptide 1 in health and disease. Nat Rev Endocrinol. 2018;14(7):390–403.

    CAS  PubMed  Google Scholar 

  68. Rowlands J, Heng J, Newsholme P, Carlessi R. Pleiotropic effects of GLP-1 and analogs on cell signaling, metabolism, and function. Front Endocrinol. 2018;9:672.

    Google Scholar 

  69. An FM, Chen S, Xu Z, Yin L, Wang Y, Liu AR, et al. Glucagon-like peptide-1 regulates mitochondrial biogenesis and tau phosphorylation against advanced glycation end product-induced neuronal insult: studies in vivo and in vitro. Neuroscience. 2015;300:75–84.

    CAS  PubMed  Google Scholar 

  70. Hinnen D. Glucagon-like peptide 1 receptor agonists for type 2 diabetes. Diabetes Spectr. 2017;30(3):202–10.

    PubMed  PubMed Central  Google Scholar 

  71. Zhang LW, Tobin GAM, Rouse RL. Oleic acid and glucose regulate glucagon-like peptide 1 receptor expression in a rat pancreatic ductal cell line. Toxicol Appl Pharmacol. 2012;264(2):274–83.

    CAS  PubMed  Google Scholar 

  72. Iakoubov R, Ahmed A, Lauffer LM, Bazinet RP, Brubaker PL. Essential role for protein kinase Czeta in oleic acid-induced glucagon-like peptide-1 secretion in vivo in the rat. Endocrinology. 2011;152(4):1244–52.

    CAS  PubMed  Google Scholar 

  73. Khound R, Taher J, Baker C, Adeli K, Su Q. GLP-1 elicits an intrinsic gut–liver metabolic signal to ameliorate diet-induced VLDL overproduction and insulin resistance. Arterioscler Thromb Vasc Biol. 2017;37(12):2252–9.

    CAS  PubMed  Google Scholar 

  74. Hirano T. Pathophysiology of diabetic dyslipidemia. J Atheroscler Thromb. 2018;25(9):771–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Morton GJ, Schwartz MW. Leptin and the central nervous system control of glucose metabolism. Physiol Rev. 2011;91(2):389–411.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang T-N, Chang W-T, Chiu Y-W, Lee C-Y, Lin K-D, Cheng YY, et al. Relationships between changes in leptin and insulin resistance levels in obese individuals following weight loss. Kaohsiung J Med Sci. 2013;29(8):436–43.

    CAS  PubMed  Google Scholar 

  77. Blanquer-Rossello MM, Santandreu FM, Oliver J, Roca P, Valle A. Leptin modulates mitochondrial function, dynamics and biogenesis in MCF-7 cells. J Cell Biochem. 2015;116(9):2039–48.

    CAS  PubMed  Google Scholar 

  78. Paz-Filho G, Mastronardi C, Wong M-L, Licinio J. Leptin therapy, insulin sensitivity, and glucose homeostasis. Indian J Endocrinol Metab. 2012;16(Suppl 3):S549–55.

    PubMed  PubMed Central  Google Scholar 

  79. Dong H-Y, Xu M, Ji Z-Y, Wang Y-X, Dong M-Q, Liu M-L, et al. Leptin attenuates lipopolysaccharide or oleic acid-induced acute lung injury in mice. Am J Respir Cell Mol Biol. 2013;49(6):1057–63.

    CAS  PubMed  Google Scholar 

  80. Chan O, Sherwin RS. Hypothalamic regulation of glucose-stimulated insulin secretion. Diabetes. 2012;61(3):564–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Cai D. One step from prediabetes to diabetes: hypothalamic inflammation? Oxford: Oxford University Press; 2012.

    Google Scholar 

  82. Siva ZO, Uluduz D, Keskin FE, Erenler F, Balci H, Uygunoglu U, et al. Determinants of glucose metabolism and the role of NPY in the progression of insulin resistance in chronic migraine. Cephalalgia. 2018;38(11):1773–81.

    PubMed  Google Scholar 

  83. Obici S, Feng Z, Morgan K, Stein D, Karkanias G, Rossetti L. Central administration of oleic acid inhibits glucose production and food intake. Diabetes. 2002;51(2):271–5.

    CAS  PubMed  Google Scholar 

  84. Luo G, Xu X, Guo W, Luo C, Wang H, Meng X, et al. Neuropeptide Y damages the integrity of mitochondrial structure and disrupts energy metabolism in cultured neonatal rat cardiomyocytes. Peptides. 2015;71:162–9.

    CAS  PubMed  Google Scholar 

  85. Jin S, Diano S. Mitochondrial dynamics and hypothalamic regulation of metabolism. Endocrinology. 2018;159(10):3596–604.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Cerf ME. Beta cell dysfunction and insulin resistance. Front Endocrinol. 2013;4:37.

    Google Scholar 

  87. Tomita T. Apoptosis in pancreatic β-islet cells in type 2 diabetes. Bosn J Basic Med Sci. 2016;16(3):162–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Perdomo L, Beneit N, Otero YF, Escribano Ó, Díaz-Castroverde S, Gómez-Hernández A, et al. Protective role of oleic acid against cardiovascular insulin resistance and in the early and late cellular atherosclerotic process. Cardiovasc Diabetol. 2015;14(1):75.

    PubMed  PubMed Central  Google Scholar 

  89. Henriksen EJ, Diamond-Stanic MK, Marchionne EM. Oxidative stress and the etiology of insulin resistance and type 2 diabetes. Free Radic Biol Med. 2011;51(5):993–9.

    CAS  PubMed  Google Scholar 

  90. Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G, et al. The vascular endothelium and human diseases. Int J Biol Sci. 2013;9(10):1057–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Victor VM, Rocha M, Herance R, Hernandez-Mijares A. Oxidative stress and mitochondrial dysfunction in type 2 diabetes. Curr Pharm Des. 2011;17(36):3947–58.

    CAS  PubMed  Google Scholar 

  92. Nakbi A, Tayeb W, Dabbou S, Issaoui M, Grissa AK, Attia N, et al. Dietary olive oil effect on antioxidant status and fatty acid profile in the erythrocyte of 2, 4-D-exposed rats. Lipids Health Dis. 2010;9(1):89.

    PubMed  PubMed Central  Google Scholar 

  93. Akash MSH, Rehman K, Chen S. Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus. J Cell Biochem. 2013;114(3):525–31.

    CAS  PubMed  Google Scholar 

  94. Karakaya P, Ozdemir B, Mert M, Okuturlar Y. Relation of Paraoxonase 1 activity with biochemical variables, brachial artery intima-media thickness in patients with diabetes with or without obesity. Obes Facts. 2018;11(1):56–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Jornayvaz FR, Brulhart-Meynet M-C, James RW. Myeloperoxidase and paraoxonase-1 in type 2 diabetic patients. Nutr Metab Cardiovasc Dis. 2009;19(9):613–9.

    CAS  PubMed  Google Scholar 

  96. Palomer X, Pizarro-Delgado J, Barroso E, Vázquez-Carrera M. Palmitic and oleic acid: the yin and yang of fatty acids in type 2 diabetes mellitus. Trends Endocrinol Metab. 2018;29(3):178–90.

    CAS  PubMed  Google Scholar 

  97. Chen K. Athero-protective actions of two oral antidiabetic drugs: suppression of inflammation and oxidative stress. J Cardiovasc Dis Res. 2012;3(1):3–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Ma L, Guo X, Chen W. Inhibitory effects of oleoylethanolamide (OEA) on H(2)O(2)-induced human umbilical vein endothelial cell (HUVEC) injury and apolipoprotein E knockout (ApoE−/−) atherosclerotic mice. Int J Clin Exp Pathol. 2015;8(6):6301–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Hardy OT, Czech MP, Corvera S. What causes the insulin resistance underlying obesity? Curr Opin Endocrinol Diabetes Obes. 2012;19(2):81.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Dhayal S, Morgan NG. The significance of GPR119 agonists as a future treatment for type 2 diabetes. Drug News Perspect. 2010;23(7):418–24.

    PubMed  Google Scholar 

  101. Liu J, Wu X, Franklin JL, Messina JL, Hill HS, Moellering DR, et al. Mammalian Tribbles homolog 3 impairs insulin action in skeletal muscle: role in glucose-induced insulin resistance. Am J Physiol Endocrinol Metab. 2009;298(3):E565–E76.

    PubMed  PubMed Central  Google Scholar 

  102. Guo L, Guo ZX, Gong HP, Shang YY, Zhong M, Zhang Y, et al. Tribbles homolog 3 is induced by high glucose and associated with apoptosis in human endothelial cells. Mol Med Rep. 2015;12(2):1963–70.

    CAS  PubMed  Google Scholar 

  103. Geng T, Hu W, Broadwater M, Snider J, Bielawski J, Russo S, et al. Fatty acids differentially regulate insulin resistance through endoplasm reticulum stress-mediated induction of tribbles homologue 3: a potential link between dietary fat composition and the pathophysiological outcomes of obesity. Diabetologia. 2013;56(9):2078–87.

    CAS  PubMed  Google Scholar 

  104. Sun X, Bao B, Gao X, Yan D, Zhou Y. Effect of glycated hemoglobin on heart function of the patients with revascularization of coronary artery. Int J Clin Exp Pathol. 2015;8(6):7181–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Ye S, Ruan P, Yong J, Shen H, Liao Z, Dong X. The impact of the HbA1c level of type 2 diabetics on the structure of haemoglobin. Sci Rep. 2016;6:33352.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Moreno B, de Faria AP, Ritter AMV, Yugar LBT, Ferreira-Melo SE, Amorim R, et al. Glycated hemoglobin correlates with arterial stiffness and endothelial dysfunction in patients with resistant hypertension and uncontrolled diabetes mellitus. J Clin Hypertens (Greenwich). 2018;20(5):910–7.

    CAS  Google Scholar 

  107. Silva FP, Carla IA, Marcelino G, Maiara LCC, de Cássia FK, de Cássia AGR, et al. Fatty acids consumption: the role metabolic aspects involved in obesity and its associated disorders. Nutrients. 2017;9(10):1158.

    Google Scholar 

  108. Soleimani M. Insulin resistance and hypertension: new insights. Kidney Int. 2015;87(3):497–9.

    PubMed  Google Scholar 

  109. Eirin A, Lerman A, Lerman LO. Mitochondrial injury and dysfunction in hypertension-induced cardiac damage. Eur Heart J. 2014;35(46):3258–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Terés S, Barceló-Coblijn G, Benet M, Alvarez R, Bressani R, Halver J, et al. Oleic acid content is responsible for the reduction in blood pressure induced by olive oil. Proc Natl Acad Sci U S A. 2008;105(37):13811–6.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the research grants (5661/Punjab/NRPU/R&D/HEC/2016, 6429/Punjab/NRPU/R&D/HEC/2016 and 8365/Punjab/NRPU/R&D/HEC/2017) received from Higher Education Commission of Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kanwal Rehman or Muhammad Sajid Hamid Akash.

Ethics declarations

Conflict of interest

Authors declare that they do not have any conflict of interest for this article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, K., Haider, K., Jabeen, K. et al. Current perspectives of oleic acid: Regulation of molecular pathways in mitochondrial and endothelial functioning against insulin resistance and diabetes. Rev Endocr Metab Disord 21, 631–643 (2020). https://doi.org/10.1007/s11154-020-09549-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-020-09549-6

Keywords

Navigation