Skip to main content
Log in

Development of refractory production in the world and in Russia, new technologies

  • Production and Equipment
  • Published:
Refractories and Industrial Ceramics Aims and scope

It is noted that under conditions of increasing competition among refractory producers there is a greater tendency of Russian refractory manufacturers to expand the production of oxide-carbon refractory objects, unmolded refractories, the production of high quality raw materials, and creation of the latest production processes, in particular the use of nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G. Rouchka and H. Wutnau (editors), Refractory Materials: Handbook [in Russian], Intermet Inzhiniring, Moscow (2010).

    Google Scholar 

  2. C. S. Semler, “Advancement of refractories never stops,” 8th India International Refractories Congress 2010, 4 – 6 February 2010, Kolkata, India.

  3. H. Nomura, “Technological changes and future needs of steel making refractories in Japan,” Taikabutsu Overseas, 29, No. 3, 173–182 (2009).

    CAS  Google Scholar 

  4. I. Watanabe, “Refractory resources in the world,” Taikabutsu–Refractory, 61, No. 9, 4467–452 (2009).

    Google Scholar 

  5. W. E. Lee, R. Guimaraes de Sa, and S. Zhang, “Challenges and opportunities for the refractories industry — an academic perspective,” Refractories Worldforum, No. 3, September (2010).

  6. M. Regaurd, N. Zhou, and F. Ye “The future of the refractory industry, with a Chinese perspective,” China’s Refractories, 1, No. 4, 3–7 (2005).

    Google Scholar 

  7. H. Fukuyama, “Dreaming of materials science with refractories,” Taikabutsu Overseas, 29, No. 3, 172 (2009).

    Google Scholar 

  8. L. M. Aksel’rod, “Refractory industry of Russia in the focus of general world tendencies,” Internat. Conf. Ceramics and refractories: promising solutions and nanotechnology, Belgorod, 9 – 12 November, 2010.

  9. I. G. Ochagova, “Tendencies in the field of refractory raw materials (abstract),” Novosti Chernaya Metallurgiya za Rubezhom, No. 4, 73–79 (2010)

  10. A. Kronthaller, “Raw Materials for refractories — a strategic challenge,” Interceram Refractories Manual, 57–59 (2009).

  11. I. Wilson, “The world of magnesite,” No. 5, 50–67 (2010).

  12. W. Hammerere and G. Kaufmann, “Global trends and challenges in magnesia production,” RHI Bulletin, No. 1, 31–34 (2007).

  13. A. Buhr, M. Spreij, and J. Dutton, “Technical and economic review of high alumina raw materials for steel refractories,” 53rd International Colloquium on Refractories 2010, Aachen, Germany, 8 – 9 September, 2010.

  14. “China announces 2011 mineral export quotas,” Industrial Minerals, No. 12 (2010).

  15. J. Poirier, “Recent tendencies in refractories in relation with service conditions in the steel industry,” 39th International Colloquium on Refractories, 24 – 25 September 1996, Aachen, Germany.

  16. L. M. Aksel’rod, A. P. laptev, V. A. Ustinov, et al., “Increase in converter life: refractories, production examples,” Metall Lit’e Ukrainy, No. 9/10, 9–15 (2009).

  17. A. Ruffaldi, “State of the art and recent development of carbon bonded refractory materials,” Tehran International Conference on Refractories, 4 – 6 May 2004.

  18. T. Li, “Present situation of refractories for Baosteel,” World refractory congress, 2004, 24 – 27 June 2004, Singapur.

  19. I. D. Kashcheev and E. E. Grishnenkov (editors), Service of Refractories: Handbook in 2 vol. Vol. 2 [in Russian], Intermet Inzhiniring, Moscow (2002).

  20. O. Krause and R. Krebs, “Test procedures for unshapen refractories under the aspect of globalization,” 51st International Colloquium on Refractories, 2008, Aachen, Germany, 15 – 16 October 200821.

  21. Yu. E. Pivinskii, Theoretical Aspects of Ceramic and Refractory Technology: coll. in 2 vol. Vol. 1 [in Russian], Stroizdat, St Petersburg (2003)

  22. Yu. E. Pivinskii, Ceramic and Refractory Materials, in 2 vol. Vol. 2 [in Russian], Stroizdat, St Petersburg (2003).

  23. T. Tonnessen and R. Telle, “From rheology to mechanical strength: influence of raw materials and suspension parameters on microstructure and related high temperature properties of high alumina castable matrices,” 53rd International Colloquium on Refractories-2010, Aachen, Germany, 8 – 9 September 2010.

  24. H. Fryda, J. Mariaoui, and C. Parr, “The determination of the shelf life of refractory castables through accelerated ageing tests,” Interceram Refractories Manual (2010).

  25. I. D. Kashcheev, “Contemporary technology for production and application of refractory materials,” Internat. Conf. Ceramics and refractories: promising solutions and nanotechnology, Belgorod, 9 – 12 November, 2010.

  26. C. M. Chan and A. J. Ruys, “Sintering studies of carbon fibre-reinforced fused silica for high-temperature applications, Interceram., 59, No. 1, 18–20 (2010).

    CAS  Google Scholar 

  27. A. Altun, H. Bagglama, and G. Muge Lune, “The effect of steel fibers and polypropylene fiber addition on properties of the LOCC and ULCC,” 52nd International Colloquium on Refractories 2009, Aachen, Germany, 23 – 24 September 2009.

  28. A. V. Gropyanov, “Technology and operating characteristics of lime and lime-periclase refractories,” Diss. Doc. Techn. Sci., St. Petersburg (2009).

  29. S. A. Suvorov and M. I. Nazmiev, “refractoies based on high purity magnesia-lime raw material,” Novye Ogneupory, No. 9, 39–44 (2007).

  30. L. Sun, Y. B. Li, and S. Zhou, et al., “Effects of temperature on the synthesis of SiALON and SiALON composite material from aluminium dross,” No. 2, 76 – 80 (2010).

  31. S. Khanagari, T. Matsui, A. Skhimpo, et al., “Development of technology for return use of refractories,” Novosti Chernaya Metallurgiya za Rubezhom, No. 3, 80–83 (2009).

  32. V. A. Perepelitsyn, “Promising technogenic material for refractory production,” Novye Ogneupory, No. 4, 13 (2009).

  33. V. A. Perepelitsyn, “Multifunctional fuzed material on an oxysilicate base,” Preprint (2008).

  34. R. Gulmaraes de Sa, G. S. B. Lenz e Silva, L. R. M. Bitttencourt, et al., “Recycling of spent refractories from metallurgical processing management and technological approach,” UNITECR’07, 2007, Dresden, Germany.

  35. E. M. M. Ewais, Y. M. Z. Ahmed, N. M. Khalil, et al., “Utilization of aluminium sludge and aluminium slag (dross) for the manufacture of calcium aluminate cement,” 52nd International Colloquium on Refractories2009, Aachen, Germany, 23 – 24 September 2009.

  36. M. L. Aksel’rod, M. B. Orzhekh, and I. V. Kushnerev, “Increase in arc furnace life by using MgO–CaO flux,” Élekrometallurgiya, No. 11, 9–13 (2009).

  37. G.Wohmeyer, T. Elorrza-Ricard, R. Joilly, et al., “The impact of synthetic slags on steel ladle refractory life time,” 51st International Colloquium on Refractories, 2008, Aachen, Germany, 15 – 16 October 2008.

  38. S. Tamura, T. Ochiai, T. Matsui, et al., “Technological philosophy and perspective of nano-technology refractories,” Shinnittetsu Giho, No. 388, 18 – 28 (2008).

    Google Scholar 

  39. M. H. Wakamatsu and R. Salomao “Ceramic nanoparticles: what else do we have to know?” Interceram., 59, No. 1, 28–33 (2010).

    CAS  Google Scholar 

  40. S. Tamura, et. al.,“Effect of small quantity additives on the properties of nano-tech refractories,” Taikabutsu Overseas, 29, No. 2, 144–147 (2009).

    Google Scholar 

  41. T. Ochiai, “Development of refractories by applying nano-technology,” J. of the Technical Association of Refractories, Japan, 25, No. 1, 4–11 (2005).

    Google Scholar 

  42. S. Tamura, T. Ochiai, S. Takanaga, et al., “Formation of nano structured matrix in nano-tech refractories,” Taikabutsu — Refractorie, 61, No. 5, 241–247 (2009).

    CAS  Google Scholar 

  43. A. V. Belyakov, “Features of introducing nanomaterials and nanotechnology in ceramic enterprises,” Steklo i Keramika, No. 7, 7 – 12 (2010).

  44. V. Ya. Shevchenko, “Temperature-resistant functional coatings,” Nanotekhnologii Ékologiya. Proizvodstvo., No. 2, 112–114 (2010).

  45. S. Tamura, T. Ochiai, S. Takanaga, et al., “Formation of nano structured matrix in nano-tech refractories,” Taikabutsu — Refractories, 61, No. 5, 241–247 (2009).

    CAS  Google Scholar 

  46. V. C. Arrasu, S. Adak, and A. K. Chattopadhyay, “Role of nano alumina on thermo-mechanical properties of alumina carbon refractories,” 8th India International Refractories Congress 2010, 4–6 February 2010, Kolkata, India.

  47. T. Tsuda, H. Hattanda, T. Ochiai, et al., “The application of the nano structured matrix to SN plates,” Taikabutsu–Refractories, 59, No. 2, 84–85 (2007).

    Google Scholar 

  48. T. Matsiu, K. Goto, Ya. Yamada, et a., “Characteristics and use of magnesia-carbon objects prepared by using nanotechnology,” Novye Ogneupory, No. 12, 61–64 (2006).

  49. C. G. Aneziris, S. L. Jin, Y. W. Li, et al., “Interactions of carbon nanotubes in Al2O3–C refractories for sliding gate applications,” UNITECR’09, 13 – 16 October 2009, Salvador, Brazil.

  50. L. Lin, T. Guangsheng, H. Zhiyong , et al., “Effects of dispersion and content of nanometer carbon on mechanical performance of low carbon MgO–C materials,”UNITECR’09, 13 – 16 October 2009, Salvador, Brazil.

  51. K. Hagen, K. Morikawa, J. Yoshitomi, et al., “Improvement of thermal spalling resistance of alumina-graphite materials by nano-technology” UNITECR’07, 2007, Dresden, Germany.

  52. D. Yoshitsugu, K. Morikawa, J. Yoshitomi, et al., “Improvement of the durability of ZG materials by nano-technology,” UNITECR’07, 2007, Dresden, Germany.

  53. A. Sen, B. Prasad, J. K. Sahu, et al., “Effect of nano-oxidants on corrosion and erosion behavior of submerged nozzle for longer sequence casting of steel,” UNITECR’09, 13 – 16 October 2009, Salvador, Brazil.

  54. H. Zargar, F. Golestanzaie Fard, and H. Rezaie “The Evaluation of in situ nano spinel seed effect in alumina-magnesia matrices,” 51st International Colloquium on Refractories, 2008, Aachen, Germany, 15 – 16 October 2008.

  55. E. S. Lukin, N. A. Makarov, A. I. Kozlov, et al., “Nanopowders for preparing a new generation of oxide ceramics,” Refractories and Industrial Ceramics, 50, No. 6, 425–430 (2009).

    Article  CAS  Google Scholar 

  56. M. Chen and C. Lu, J. Yu “Improvement in performance of MgO–CaO refractories by addition of nano-sized ZrO2,” Journal of the European Ceramic Society, 27, No. 16, 4633–4638, (2007).

    Article  CAS  Google Scholar 

  57. A. V. Galakhov “Agglomerates in nanopowders and ceramic technology,” Refractories and Industrial Ceramics, 50, No. 5, 348–353 (2009).

    Article  Google Scholar 

  58. D. V. Kuznetsov, D. V. Lysov, A. A. Nemtinov, et al., “Nanomaterials in refractory technology,” Refractories and Industrial Ceramics, 51, No. 2, 61–63 (2010).

    Article  Google Scholar 

  59. O. V. Roman, F. I. Panteleenko, O. P. Reut, et a., “Scientific and practical approaches to creating ceramic refractory materials and technology,” Novye Ogneupory, No. 9, 17–27 (2010).

  60. A. R. Sauri, F. Marhadi, and Nia Kashani, “The effect of nano-structured colloidal silica on the properties of tabular alumina castables,” Interceram., 57, No. 6, 414–416 (2008).

    Google Scholar 

  61. Yu. E. Pivinskii, P. V. Dyakin, Ya. Yu. Pivinskii, et al., “Nanoparticles and their effective use in the technology of highly concentrated binding suspensions (HCBS) and refractory castables,” Refractories and Industrial Ceramics, 44., No. 5, 309–313 (2003).

    Article  CAS  Google Scholar 

  62. Yu. E. Pivinskii and Pavel V. Dyakin, “Preparation and properties of corundum HCBS and ceramic concretes. Part 2. Composition and properties of compacted ceramic concretes,” Refractories and Industrial Ceramics, 51, No. 1, 32–38 (2010).

    Article  CAS  Google Scholar 

  63. A. Doroganov and Yu. N. Trepalina, “Highly concentrated ceramic binder suspensions based on silicon carbide,” Refractories and Industrial Ceramics, 51, No. 4, 302–304 (2010).

    Article  CAS  Google Scholar 

  64. V. A. Doroganov, E. A. Doroganov, and N. S. Bel’maz, “Development and study of composite refractory materials based on modified dispersed systems,” Refractories and Industrial Ceramics, 50, No. 6, 431–437 (2009).

    Article  CAS  Google Scholar 

  65. E. A. Doroganov and A. D. Mazurov, “Modification of HCBS at a nanodispersed level,” Novye Ogneupory, No. 10, 30–34 (2010).

  66. M. R. Ismael, R. Salomao, and V. C. Pandolfelli, “Refractory castables based on colloidal silica and hydratable alumina,” American Ceramic Society Bulletin, 86, No. 9, 58–61 (2007

    Google Scholar 

  67. M. A. I. Braulio, V. C. Pandolfelli, and C. Tontrup, “Colloidal alumina as a novel refractory castable binder,” 53rd International Colloquium on Refractories 2010, Aachen, Germany, 8 – 9 September 2010.

  68. M. V. M. Magliano, E. Prestes, J. Medeiros, et al., “Colloidal silica selection for nanobonded refractory castables,” Refractories Applications and News, 15, No. 3, 14–17 (2010).

    CAS  Google Scholar 

  69. A. Banerjee, S. Das, S. Misra, et al., “Structural analysis on spinel (MgAl2O4) for application in spinel-bonded castables,” Ceramics International, 35, No. 1, 381–390 (2009).

    Article  CAS  Google Scholar 

  70. A. R. Sou, B. Mirhadi, and F. Kashani Nia, “The Effect of Nano-Structured Colloidal Silica on the Properties of Tabular Alumina Castables,” Interceram., 57, No. 6, 414–416 (2008).

    Google Scholar 

  71. N. Homedani Golshan, H. Surpoolaky, A. Seuri, et al., “Influence of colloidal silica on microstructure and properties of forsterite bonded magnesite,” 51st International Colloquium on Refractories, 2008, Aachen, Germany, 15 – 16 October 2008.

  72. A. V. Cherevatova, “Principles of creating nanostructured binders based on HCBS,” Refractories and Industrial Ceramics, 51, No. 2, 118–120 (2010).

    Article  Google Scholar 

  73. G. D. Semchenko, Unmolded Refractories [in Russian], NTU KhPI, Khar’kov (2007).

  74. G. D. semchenko, Sol-Gel Process in Ceramic Technology [in Russian], BI Khar’kov (1997).

  75. G. D. Semchenko, M. A. Panasenko, O. I. Zelenskii, et al., “Carbon precursors for synthesizing oxygen-free refractory new formations in carbon-graphite materials,” Refractories and Industrial Ceramics, 51, No. 3, 193–196 (2010).

    Article  CAS  Google Scholar 

  76. R. Haensel, K. Schoenemann, and P. Seidensticker, “A novel binder system for increase of the mechanical strength of refractories,” 53rd International Colloquium on Refractories 2010, Aachen, Germany, 8 – 9 September, 2010.

  77. G. Falk, R. Clasen, andW. da Silveira , “Colloidal processing of antioxidants for manipulation of microstructure in magnesia-carbon bricks,” 52nd International Colloquium on Refractories 2010, Aachen, Germany, 23 – 24 September 2009. — P. 148–153.

  78. B. Mishra, P. Moharatra, and V. K. Panda, “Influence of nano TiO2 addition on the properties of direct bonded mag-chrome bricks,” 8th India International Refractories Congress 2010, 4 – 6 February 2010, Kolkata, India.

  79. P. Vadasz, O. Komod’a, I. Imris, et al., “Influence of alternative fuels on the corrosion of basic refractories lining,” Interceram., 58, No. 2/3, 130–135 (2009).

    CAS  Google Scholar 

  80. I. Kharder, “tendency of use of refractory ceramic materials in cement industry,” Tsement. Izvest’. Gips, No. 1, 22–34 (2009).

  81. T. P. Shveikin, N. V. Lukin, and L. B. Khoroshavin, “Sialons—promising refractory and ceramic materials,” Novye Ogneupory, No. 7, 30–37 (2002).

  82. X. Zhong, “Refractory oxide—non-oxide composites,” American Ceramic Society Bulletin, 86, No. 9, 62–64 (2007).

    CAS  Google Scholar 

  83. A. N. Dovgal’, T. P. Bondarchuk, O. V. Karpova, et al., “Side lining of electrolyzers made of silicon carbide on a nitride binder produced by Vulcan Refractories — Volga Abrasive Plant,” 2nd Internat. Cong. Nonferrous Metals 2010, 2 – 4 September 2010, Krasnoyarsk.

  84. O. Anton, A. Opsommer, V. Krassel, et al., “Matrix engineered insulation material for usage in refractory linings,” UNITECR’09, 13 – 16 October 2009, Salvador, Brazil.

  85. B. Schickle, T. Tonnesen, and R. Telle, “Recycling of coal flotation residues for the production of porous light weight materials,” Supplement to Interceram., 58, No. 4 (2009).

  86. I. D. Kashcheev, S. A. Sychev, K. G. Zemlyanoi, et al., “Diatomic heat insulation materials with increased application temperature,” Refractories and Industrial Ceramics, 50, No. 5, 354–358 (2009).

    Article  CAS  Google Scholar 

  87. H. Okuno, M. Sugahara, and S. Yahiro “Insulating castable refractories used for wet gunning installation,” UNITECR’07, 2007, Dresden, Germany.

  88. S. A. Suvorov and V. V. Skurikhin, “A physicochemical study of properties of integrated high-temperature heat-insulating materials,” Refractories and Industrial Ceramics, 45, No. 3, 165–171 (2004).

    Article  CAS  Google Scholar 

  89. S. V. Mal’tsev, “Prospects for the use of heat insulating materials manufactured by ceramic concrete technology,” Refractories and Industrial Ceramics, 50, No. 3, 160–162 (2009).

    Article  Google Scholar 

  90. H. Wuthnow, J. Potschke, A. Buhr, et al., “Experiences with microporous calcium hexaluminate insulating materials in steel reheating furnaces at Hoesch Hohenlimburg and Thyssen Krupp Stahl AG Bochum,” 47th International Colloquium on Refractories 2004, Aachen, Germany, 13 – 14 October 2004.

  91. “New promising refractory and heat protecting materials, and their production technology,” Zh.-Spravochnik Investora, No. 1, 1–8 (2001).

  92. L. Holcher, W. Stellmach, H. Scheleger, et al., “Culutherm® — A hydrothermaly cured thermal insulation material based on Hibonite for temperatures up to 1600°C,” Interceram., 57, No. 5, 330–334 (2007).

    Google Scholar 

  93. E. Brochen, C. Bruggmann, J. Potschke, et al., “Thermo-mechanical characterization of magnesia-based refractory products by means of wedge splitting test above 1000°C,” 53rd International Colloquium on Refractories 2010, Aachen, Germany, 8 – 9 September 2010.

  94. H. Harmuth and R. C. Bradt, “Investigation of refractory brittleness by fracture mechanical and fractographic methods,” Interceram Refractories, Manual (2010).

  95. A. V. Galakhov, “Numerical method for simulating sintering,” Refractories and Industrial Ceramics, 50, No. 3, 191–197 (2009).

    Article  CAS  Google Scholar 

  96. S. Vollmann, H. Harmuth, and B. Buchberger, “Investigation of the Influence of Fluid Flow on Slag Corrosion of Refractories by CFD Calculations,” 52nd International Colloquium on Refractories 2010, Aachen, Germany, 23 – 24 September 2009.

  97. T. Auer, D. Gruber, H. Harmuth, et al., “Thermo-mechanical simulation of two alternative steel ladle lining,” 53rd International Colloquium on Refractories 2010, Aachen, Germany, 8 – 9 September 2010.

  98. S. A. Suvorov and V. V. Kozlov, “Model evaluation of the skull thickness formed at the surface of a periclase-carbon lining of an oxygen converter,” Ogneupory Tekh. Keram., No. 11/12, 17–20 (2009).

    Google Scholar 

  99. A. A. babenko, M. S. Fomichev, L. Yu. Krivykh, et al., “Melting of steel in a 160-ton converter of carbon semi-finished product under magnesia slags,” Stal’, No. 8, 35–38 (2010).

    Google Scholar 

  100. I. Vollenberg, G. Mittler, E. Brochen, et al., “Optimization of refractories by combining laboratory investigations with numerical simulation using the example of a MgO–C bricks in steel ladle and converter,” 53rd International Colloquium on Refractories 2010, Aachen, Germany, 8 – 9 September 2010.

  101. L. M. Aksel’rod and A. V. Zabolotskii, “Mathematical modelling of lining failure of metallurgical equipment under the action of thermal shock,” Contemporary Science: Coll. Articles of international Conf.Actual questions of thermal physics and physical hydrodynamics,” Nio. 2, 161–169 (2010).

  102. D. Gruber, T. Auer, H. Harmuth, et al., “Finite element investigation on the crack formation in the slag line of teeming ladle,” UNITECR’07, 2007, Dresden, Germany.

  103. J. Potschke, “The influence of electrical forces on the corrosion of refractory,” Refractories Manual, P. 10 – 26 (2008).

  104. A. V. Belyakov, “Problems of educating staff under contemporary conditions,” Novye Ogneupory, No. 3, 49–51 (2010).

  105. C. G. Aneziris, “Education and research of refractories in Germany,” UNITECR’09, 13 – 16 October 2009, Salvador, Brazil.

  106. A. Hey, “Refractories education and training in a changing globalised environment,” UNITECR’09, 13 – 16 October 2009, Salvador, Brazil.

  107. N. K. Anokhina, “Methodological aspects of contemporary engineering education,” Vestn. Gorn.-Met. Sektsii RAEN, Novokuznetsk (2010).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Novye Ogneupory, No. 3, pp. 106 – 119, March 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aksel’rod, L.M. Development of refractory production in the world and in Russia, new technologies. Refract Ind Ceram 52, 95–106 (2011). https://doi.org/10.1007/s11148-011-9375-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-011-9375-0

Keywords

Navigation