Skip to main content
Log in

A multivariate stochastic volatility model with applications in the foreign exchange market

  • Published:
Review of Derivatives Research Aims and scope Submit manuscript

Abstract

The main objective of this paper is to study the behavior of a daily calibration of a multivariate stochastic volatility model, namely the principal component stochastic volatility (PCSV) model, to market data of plain vanilla options on foreign exchange rates. To this end, a general setting describing a foreign exchange market is introduced. Two adequate models—PCSV and a simpler multivariate Heston model—are adjusted to suit the foreign exchange setting. For both models, characteristic functions are found which allow for an almost instantaneous calculation of option prices using Fourier techniques. After presenting the general calibration procedure, both the multivariate Heston and the PCSV models are calibrated to a time series of option data on three exchange rates—USD-SEK, EUR-SEK, and EUR-USD—spanning more than 11 years. Finally, the benefits of the PCSV model which we find to be superior to the multivariate extension of the Heston model in replicating the dynamics of these options are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. See Neri and Schneider (2012) for more detail on maximum entropy.

  2. Lipton (2001) also refers to the triangular relation as the cross-currency rule.

  3. See, for example, Grabbe (1983), Ahlip (2008), Grzelak and Oosterlee (2011), who include stochastic interest rates into the Heston framework, or Amin and Jarrow (1991), who use a two-factor model similar to Heath et al. (1990) for the interest rates. However, stochastic interest rates within a foreign exchange setting must be considered with caution as there exist causal or even reverse causal effects between exchange rates and their corresponding interest rates.

  4. Here, local refers to the geographical location of the investor.

  5. See Heston (1993) or Albrecher et al. (2007) for a specification of the univariate conditional characteristic function of the Heston model.

  6. The empirical findings, however, strongly suggest that an interpretation as eigenvalues is appropriate.

  7. On August 16th, 2007 there is also an unusually large increase in the implied volatility for options on the EUR-USD exchange rate. This data point, however, is not removed, because the reason for this sharp rise in volatility was the announcement of Countrywide Financial, which was at the time the biggest mortgage lender in the US, expressing concerns over its liquidity.

  8. An anonymous referee pointed out that, instead of setting the initial parameters of the extended PCSV model equal to the parameters obtained for the extended Heston model, it might be a better strategy to choose the initial parameters for the PCSV model such that the spot-vol correlations of the two models coincide. However, the empirical results presented below suggest that the effects of changing the initial parameters are negligible.

  9. To allow for comparisons between the bivariate and the trivariate calibrations, the respective other quantities as well as the further error measures are calculated using the calibrated parameters.

  10. The Triennial Central Bank Survey: Global foreign exchange market turnover in 2013 conducted by the Bank for International Settlements states that EUR-USD spot market transactions account for 24.14% of the total activity on the global spot FX market manifesting the exchange rate’s predominant role in the world. In contrast, the USD-SEK and EUR-SEK exchange rates only play a minor role on the FX markets contributing only 0.38%, respectively 0.69% to the global spot transactions. Despite the insignificance of these two exchange rates for the global FX market, they are nonetheless important for the Swedish FX market with the USD-SEK exchange rate accounting for 29.08% and the EUR-SEK exchange rate for 52.40% of all spot transactions with the Swedish krona on one side.

  11. Notice, that while from an economic perspective \(S^{\textit{EUR-USD}}(t) = \frac{S^{\textit{EUR-SEK}}(t)}{S^{\textit{USD-SEK}}(t)}\) is not confirmed, the mathematical validity of this relationship cannot be questioned.

References

  • Ahlip, R. (2008). Foreign exchange options under stochastic volatility and stochastic interest rates. International Journal of Theoretical and Applied Finance, 11(03), 277–294.

    Article  Google Scholar 

  • Albrecher, H., Mayer, P., Schoutens, W., & Tistaert, J. (2007). The Little Heston trap. Wilmott Magazine, 26, 83–92.

    Google Scholar 

  • Amin, K., & Jarrow, R. (1991). Pricing foreign currency options under stochastic interest rates. Journal of International Money and Finance, 10(3), 310–329.

    Article  Google Scholar 

  • Andersen, L. B. G. (2007). Efficient simulation of the Heston stochastic volatility model. Available at SSRN 946405.

  • Bakshi, G., & Madan, D. (2000). Spanning and derivative-security valuation. Journal of Financial Economics, 55(2), 205–238.

    Article  Google Scholar 

  • Bakshi, G., Cao, C., & Chen, Z. (1997). Empirical performance of alternative option pricing models. The Journal of Finance, 52(5), 2003–2049.

    Article  Google Scholar 

  • Bakshi, G. S., & Chen, Z. (1997). Equilibrium valuation of foreign exchange claims. The Journal of Finance, 52(2), 799–826.

    Article  Google Scholar 

  • Bannör, K. F., & Scherer, M. (2013). A BNS-type stochastic volatility model with two-sided jumps, with applications to FX options pricing. Wilmott Magazine, 65, 58–69.

    Article  Google Scholar 

  • Bannör, K. F., Scherer, M., & Schulz, T. (2015). A two-sided BNS model for multicurrency FX markets. In K. Glau, M. Scherer, & R. Zagst (Eds.), Innovations in Quantitative Risk Management (pp. 93–107). Berlin: Springer.

    Google Scholar 

  • Barndorff-Nielsen, O. E., & Stelzer, R. (2013). The multivariate supOU stochastic volatility model. Mathematical Finance, 23(2), 275–296.

    Article  Google Scholar 

  • Bates, D. S. (1996). Jumps and stochastic volatility: Exchange rate processes implicit in deutsche mark options. The Review of Financial Studies, 9(1), 69–107.

    Article  Google Scholar 

  • Bessembinder, H. (1994). Bid-ask spreads in the interbank foreign exchange markets. Journal of Financial Economics, 35(3), 317–348.

    Article  Google Scholar 

  • Bianchetti, M., & Carlicchi, M. (2013). Evolution of the markets after the credit crunch. In M. Bianchetti & M. Morini (Eds.), Interest rate modelling after the financial crisis (pp. 5–60). London: Risk Books.

    Google Scholar 

  • Biger, N., & Hull, J. (1983). The valuation of currency options. Financial Management, 12(1), 24–28.

    Article  Google Scholar 

  • Bisesti, L., Castagna, A., & Mercurio, F. (2005). Consistent pricing and hedging of an FX options book. The Kyoto Economic Review, 74(1), 65–83.

    Google Scholar 

  • Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. The Journal of Political Economy, 81(3), 637–654.

    Article  Google Scholar 

  • Bossens, F., Rayée, G., Skantzos, N. S., & Deelstra, G. (2010). Vanna-Volga methods applied to FX derivatives: From theory to market practice. International Journal of Theoretical and Applied Finance, 13(08), 1293–1324.

    Article  Google Scholar 

  • Branger, N., & Muck, M. (2012). Keep on smiling? The pricing of Quanto options when all covariances are stochastic. Journal of Banking & Finance, 36(6), 1577–1591.

    Article  Google Scholar 

  • Carr, P., & Crosby, J. (2010). A class of Lévy process models with almost exact calibration to both barrier and vanilla FX options. Quantitative Finance, 10(10), 1115–1136.

    Article  Google Scholar 

  • Carr, P., & Madan, D. (1999). Option valuation using the fast Fourier transform. Journal of Computational Finance, 2(4), 61–73.

    Article  Google Scholar 

  • Carr, P., & Wu, L. (2007). Stochastic skew in currency options. Journal of Financial Economics, 86(1), 213–247.

    Article  Google Scholar 

  • Christoffersen, P., Heston, S., & Jacobs, K. (2009). The shape and term structure of the index option smirk: Why multifactor stochastic volatility models work so well. Management Science, 55(12), 1914–1932.

    Article  Google Scholar 

  • Clark, I. J. (2011). Foreign exchange option pricing: A practitioners guide. Chichester: Wiley.

    Google Scholar 

  • Coleman, T. F., & Li, Y. (1994). On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds. Mathematical Programming, 67(2), 189–224.

    Article  Google Scholar 

  • Cox, J. C., & Ross, S. A. (1976). The valuation of options for alternative stochastic processes. Journal of Financial Economics, 3(1–2), 145–166.

    Article  Google Scholar 

  • Da Fonseca, J., & Grasselli, M. (2011). Riding on the smiles. Quantitative Finance, 11(11), 1609–1632.

    Article  Google Scholar 

  • Da Fonseca, J., Grasselli, M., & Tebaldi, C. (2008). A multifactor volatility Heston model. Quantitative Finance, 8(6), 591–604.

    Article  Google Scholar 

  • Da Fonseca, J., Grasselli, M., & Ielpo, F. (2014). Estimating the Wishart affine stochastic correlation model using the empirical characteristic function. Studies in Nonlinear Dynamics & Econometrics, 18(3), 253–289.

    Article  Google Scholar 

  • De Col, A., Gnoatto, A., & Grasselli, M. (2013). Smiles all around: FX joint calibration in a multi-Heston model. Journal of Banking & Finance, 37(10), 3799–3818.

    Article  Google Scholar 

  • Dempster, M. A. H., & Hong, S. S. G. (2000). Spread option valuation and the fast Fourier transform. In: Mathematical Finance—Bachelier Congress 2000 (pp. 203–220). Berlin: Springer.

  • DeRosa, D. F. (2011). Options on foreign exchange. Chichester: Wiley.

    Book  Google Scholar 

  • Doust, P. (2012). The stochastic intrinsic currency volatility model: A consistent framework for multiple FX rates and their volatilities. Applied Mathematical Finance, 19(5), 381–445.

    Article  Google Scholar 

  • Escobar, M., & Gschnaidtner, C. (2016). Parameters recovery via calibration in the Heston model: A comprehensive review. Wilmott Magazine, 86, 60–81.

    Article  Google Scholar 

  • Escobar, M., & Olivares, P. (2013). Pricing of mountain range derivatives under a principal component stochastic volatility model. Applied Stochastic Models in Business and Industry, 29(1), 31–44.

    Article  Google Scholar 

  • Escobar, M., Götz, B., Seco, L., & Zagst, R. (2010). Pricing a CDO on stochastically correlated underlyings. Quantitative Finance, 10(3), 265–277.

    Article  Google Scholar 

  • Feiger, G., & Bertrand, J. (1979). Currency option bonds, puts and calls on spot exchange and the hedging of contingent foreign earnings. The Journal of Finance, 34(5), 1129–1139.

    Article  Google Scholar 

  • Feller, W. (1951). Two singular diffusion problems. Annals of Mathematics, 54(1), 173–182.

    Article  Google Scholar 

  • Flesaker, B., & Hughston, L. P. (1997). International models for interest rates and foreign exchange. Net Exposure, 3, 55–79.

    Google Scholar 

  • Frey, R., & Sommer, D. (1996). A systematic approach to pricing and hedging international derivatives with interest rate risk: Analysis of international derivatives under stochastic interest rates. Applied Mathematical Finance, 3(4), 295–317.

    Article  Google Scholar 

  • Garman, M. B., & Kohlhagen, S. W. (1983). Foreign currency option values. Journal of International Money and Finance, 2(3), 231–237.

    Article  Google Scholar 

  • Geman, H., Karoui, N. E., & Rochet, J. C. (1995). Changes of numéraire, changes of probability measure and option pricing. Journal of Applied Probability, 32(2), 443–458.

    Article  Google Scholar 

  • Grabbe, J. O. (1983). The pricing of call and put options on foreign exchange. Journal of International Money and Finance, 2(3), 239–253.

    Article  Google Scholar 

  • Grzelak, L. A., & Oosterlee, C. W. (2011). On the Heston model with stochastic interest rates. SIAM Journal on Financial Mathematics, 2(1), 255–286.

    Article  Google Scholar 

  • Heath, D., Jarrow, R., & Morton, A. (1990). Contingent claim valuation with a random evolution of interest rates. Review of Futures Markets, 9(1), 54–76.

    Google Scholar 

  • Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. The Review of Financial Studies, 6(2), 327–343.

    Article  Google Scholar 

  • Hull, J., & White, A. (1987). The pricing of options on assets with stochastic volatilities. The Journal of Finance, 42(2), 281–300.

    Article  Google Scholar 

  • Hull, J., & White, A. (2013). LIBOR vs. OIS: The derivatives discounting dilemma. The Journal of Investment Management, 11(3), 14–27.

    Google Scholar 

  • Hurd, T., & Zhou, Z. (2010). A Fourier transform method for spread option pricing. SIAM Journal on Financial Mathematics, 1(1), 142–157.

    Article  Google Scholar 

  • Levendorskiy, S. (2012). Efficient pricing and reliable calibration in the Heston model. International Journal of Theoretical and Applied Finance, 15(07), 1250050.

    Article  Google Scholar 

  • Lipton, A. (2001). Mathematical methods for foreign exchange: A financial engineer’s approach. Singapore: World Scientific.

    Book  Google Scholar 

  • Melino, A., & Turnbull, S. M. (1990). Pricing foreign currency options with stochastic volatility. Journal of Econometrics, 45(1–2), 239–265.

    Article  Google Scholar 

  • Merton, R. C. (1973). Theory of rational option pricing. The Bell Journal of Economics and Management Science, 4(1), 141–183.

    Article  Google Scholar 

  • Muhle-Karbe, J., Pfaffel, O., & Stelzer, R. (2012). Option pricing in multivariate stochastic volatility models of OU type. SIAM Journal on Financial Mathematics, 3(1), 66–94.

    Article  Google Scholar 

  • Neri, C., & Schneider, L. (2012). Maximum entropy distributions inferred from option portfolios on an asset. Finance and Stochastics, 16(2), 293–318.

    Article  Google Scholar 

  • Pelsser, A. (2003). Mathematical foundation of convexity correction. Quantitative Finance, 3(1), 59–65.

    Article  Google Scholar 

  • Recchioni, M. C., & Scoccia, A. (2014). An analytically tractable multi-asset stochastic volatility model. Applied Mathematical Sciences, 8(27), 1339–1355.

    Article  Google Scholar 

  • Reiswich, D., & Wystup, U. (2010). A guide to FX options quoting conventions. The Journal of Derivatives, 18(2), 58–68.

    Article  Google Scholar 

  • Schlögl, E. (2002). A multicurrency extension of the lognormal interest rate market models. Finance and Stochastics, 6(2), 173–196.

    Article  Google Scholar 

  • Shiraya, K., & Takahashi, A. (2014). Pricing multiasset cross-currency options. Journal of Futures Markets, 34(1), 1–19.

    Article  Google Scholar 

  • Stein, E. M., & Stein, J. C. (1991). Stock price distributions with stochastic volatility: An analytic approach. The Review of Financial Studies, 4(4), 727–752.

    Article  Google Scholar 

  • van der Stoep, A. W., Grzelak, L. A., & Oosterlee, C. W. (2015). The time-dependent FX-SABR model: Effcient calibration based on effective parameters. International Journal of Theoretical and Applied Finance, 18(06), 1550042.

    Article  Google Scholar 

  • Wystup, U. (2007). FX options and structured products. Oxford: Wiley.

    Google Scholar 

Download references

Acknowledgements

We want to thank two anonymous referees for their valuable comments and suggestions helping to improve this essay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Gschnaidtner.

Appendix: Proofs

Appendix: Proofs

Proof (Proposition 1)

The trivariate conditional characteristic function can be written as

$$\begin{aligned} \varPhi _{\mathbf {X}}(\mathbf {w},T\mid {\mathcal {F}}_t) = E_{{\mathbb {Q}}_{\textit{DOM}}}\left[ e^{i\mathbf {w}'\mathbf {X}(T)}| {\mathcal {F}}_t \right] , \end{aligned}$$
(15)

where \(\mathbf {w} = \left( \begin{array}{c} w_1\\ w_2\\ w_3\\ \end{array} \right) \in {\mathbb {R}}^3\). With (D2) it holds for the log-exchange rates that

$$\begin{aligned} \mathbf {X}(t) = \left( \begin{array}{c} X^{\textit{FOR}_1 \text {-} \textit{DOM}}(t)\\ X^{\textit{FOR}_2 \text {-} \textit{DOM}}(t)\\ X^{\textit{FOR}_2 \text {-} \textit{FOR}_1}(t)\\ \end{array} \right) = \left( \begin{array}{c} X^{\textit{FOR}_1 \text {-} \textit{DOM}}(t)\\ X^{\textit{FOR}_2 \text {-} \textit{DOM}}(t)\\ X^{\textit{FOR}_2 \text {-} \textit{DOM}}(t) - X^{\textit{FOR}_1 \text {-} \textit{DOM}}(t)\\ \end{array} \right) . \end{aligned}$$
(16)

Using (15) and (16) we obtain the expression for the trivariate conditional characteristic function

$$\begin{aligned} \varPhi _{\mathbf {X}}(\mathbf {w},T\mid {\mathcal {F}}_t)&= E_{{\mathbb {Q}}_{\textit{DOM}}}\left[ e^{i\mathbf {w}'\mathbf {X}(T)} \bigg | {\mathcal {F}}_t \right] \\&= E_{{\mathbb {Q}}_{\textit{DOM}}}\left[ e^{i\left( (w_1 - w_3)\cdot X^{\textit{FOR}_1 \text {-} \textit{DOM}}(T) + (w_2 + w_3)\cdot X^{\textit{FOR}_2 \text {-} \textit{DOM}}(T) \right) } \bigg | {\mathcal {F}}_t \right] \\&= E_{{\mathbb {Q}}_{\textit{DOM}}}\left[ e^{i(w_1 - w_3)\cdot X^{\textit{FOR}_1 \text {-} \textit{DOM}}(T)} \bigg | {\mathcal {F}}_t \right] \\&\quad \cdot E_{{\mathbb {Q}}_{\textit{DOM}}}\left[ e^{i(w_2 + w_3) \cdot X^{\textit{FOR}_2 \text {-} \textit{DOM}}(T)} \bigg | {\mathcal {F}}_t \right] \\&= \varPhi _{X^{\textit{FOR}_1 \text {-} \textit{DOM}}}(w_1 - w_3,T\mid {\mathcal {F}}_t) \cdot \varPhi _{X^{\textit{FOR}_2 \text {-} \textit{DOM}}}(w_2 + w_3,T\mid {\mathcal {F}}_t), \end{aligned}$$

where \(\varPhi _{X^{\textit{FOR}_1 \text {-} \textit{DOM}}}(w_1 - w_3,T\mid {\mathcal {F}}_t)\) and \(\varPhi _{X^{\textit{FOR}_2 \text {-} \textit{DOM}}}(w_2 + w_3,T\mid {\mathcal {F}}_t)\) are the conditional characteristic functions of \(X^{\textit{FOR}_1 \text {-} \textit{DOM}}(T)\) and \(X^{\textit{FOR}_2 \text {-} \textit{DOM}}(T)\), respectively. The penultimate equation follows from the independence of \((X^{\textit{FOR}_1 \text {-} \textit{DOM}}(t))_{t\ge 0 }\) and \((X^{\textit{FOR}_2 \text {-} \textit{DOM}}(t))_{t\ge 0 }\).

Proof (Proposition 2)

For the conditional characteristic function of \(\mathbf {X}(t)\) it holds that

$$\begin{aligned} \varPhi _{\mathbf {X}}\left( \mathbf {w},T \mid {\mathcal {F}}_t\right)&= E\left[ e^{i\mathbf {w}'{\mathbf {X}}(T)} \bigg | {\mathcal {F}}_t \right] \\&= E\left[ e^{i \left( w_1\cdot X^{\textit{FOR}_1 \text {-} \textit{DOM}}(T) + w_2\cdot X^{\textit{FOR}_2 \text {-} \textit{DOM}}(T) + w_3\cdot X^{\textit{FOR}_2 \text {-} \textit{FOR}_1}(T) \right) } \bigg | {\mathcal {F}}_t \right] \\&= e^{i\mathbf {w}'{\mathbf {X}}(t)} \cdot E\left[ e^{i \left( w_1\cdot \left( X^{\textit{FOR}_1 \text {-} \textit{DOM}}(T) - X^{\textit{FOR}_1 \text {-} \textit{DOM}}(t)\right) + w_2 \cdot \left( X^{\textit{FOR}_2 \text {-} \textit{DOM}}(T) - X^{\textit{FOR}_2 \text {-} \textit{DOM}}(t)\right) \right. } \right. \\&\quad \left. {}^{\left. + w_3 \cdot \left( X^{\textit{FOR}_2 \text {-} \textit{FOR}_1}(T) - X^{\textit{FOR}_2 \text {-} \textit{FOR}_1}(t) \right) \right) } \bigg | {\mathcal {F}}_t \right] \\&= e^{i\mathbf {w}'{\mathbf {X}}(t)} \cdot E\left[ e^{i\mathbf {w}'\left( \mathbf {X}(T) - \mathbf {X}(t)\right) } \bigg | {\mathcal {F}}_t \right] . \end{aligned}$$

Here, the differences \(X^{\textit{FOR}_1 \text {-} \textit{DOM}}(T) - X^{\textit{FOR}_1 \text {-} \textit{DOM}}(t), X^{\textit{FOR}_2 \text {-} \textit{DOM}}(T) - X^{\textit{FOR}_2 \text {-} \textit{DOM}}(t)\), and \(X^{\textit{FOR}_2 \text {-} \textit{FOR}_1}(T) - X^{\textit{FOR}_2 \text {-} \textit{FOR}_1}(t)\) can be rewritten as

$$\begin{aligned} \begin{aligned} X^{\textit{FOR}_1 \text {-} \textit{DOM}}(T) - X^{\textit{FOR}_1 \text {-} \textit{DOM}}(t)&= \sum \limits _{j=1}^2 \left( Z^{\textit{FOR}_1 \text {-} \textit{DOM}}_{j}(T) - Z^{\textit{FOR}_1 \text {-} \textit{DOM}}_{j}(t)\right) ,\\ X^{\textit{FOR}_2 \text {-} \textit{DOM}}(T) - X^{\textit{FOR}_2 \text {-} \textit{DOM}}(t)&= \sum \limits _{j=1}^2 \left( Z^{\textit{FOR}_2 \text {-} \textit{DOM}}_{j}(T) - Z^{\textit{FOR}_2 \text {-} \textit{DOM}}_{j}(t)\right) ,\\ X^{\textit{FOR}_2 \text {-} \textit{FOR}_1}(T) - X^{\textit{FOR}_2 \text {-} \textit{FOR}_1}(t)&= \sum \limits _{j=1}^2 \left( Z^{\textit{FOR}_2 \text {-} \textit{FOR}_1}_{j}(T) - Z^{\textit{FOR}_2 \text {-} \textit{FOR}_1}_{j}(t)\right) , \end{aligned} \end{aligned}$$

with the dynamics of \(Z^{\textit{FOR}_1 \text {-} \textit{DOM}}_{j}(t), Z^{\textit{FOR}_2 \text {-} \textit{DOM}}_{j}(t)\), and \(Z^{\textit{FOR}_2 \text {-} \textit{FOR}_1}_{j}(t)\) defined by

$$\begin{aligned} dZ^{\textit{FOR}_1 \text {-} \textit{DOM}}_{j}(t)&= \left( \frac{r_{\textit{DOM}} - r_{\textit{FOR}_1}}{2}-\frac{1}{2}a_{1j}^{2}\lambda _{j}(t)\right) dt +a_{1j}\sqrt{\lambda _{j}(t)}dW_{j}(t),\\ dZ^{\textit{FOR}_2 \text {-} \textit{DOM}}_{j}(t)&= \left( \frac{r_{\textit{DOM}} - r_{\textit{FOR}_2}}{2}-\frac{1}{2}a_{2j}^{2}\lambda _{j}(t)\right) dt +a_{2j}\sqrt{\lambda _{j}(t)}dW_{j}(t),\\ dZ^{\textit{FOR}_2 \text {-} \textit{FOR}_1}_{j}(t)&= \left( \frac{r_{\textit{FOR}_1}-r_{\textit{FOR}_2}}{2}-\frac{1}{2}\left( a_{2j}^{2} - a_{1j}^{2}\right) \lambda _{j}(t)\right) dt \\&\quad +\left( a_{2j} - a_{1j}\right) \sqrt{\lambda _{j}(t)}dW_{j}(t). \end{aligned}$$

Defining \(Z^*_{j}(t)\) as \(Z^*_{j}(t) :={w_1 \cdot Z^{\textit{FOR}_1 \text {-} \textit{DOM}}_{j}(t) + w_2 \cdot Z^{\textit{FOR}_2 \text {-} \textit{DOM}}(t)} + w_3 \cdot Z^{\textit{FOR}_2 \text {-} \textit{FOR}_1}(t)\), it follows that \(Z^*_{j}(t)\) is a Heston-type stochastic process with dynamics

$$\begin{aligned} \begin{aligned} dZ^*_{j}(t)&= \left( r(\mathbf {w}) + \frac{b_{j}(\mathbf {w})}{c^2_{j}(\mathbf {w})}\lambda ^*_{j}(t)\right) dt + \sqrt{\lambda ^*_{j}(t)}dW_{j}(t),\\ d\lambda ^*_{j}(t)&= \kappa _{j}(c^2_{j}(\mathbf {w}) \cdot \theta _{j}-\lambda ^*_{j}(t))dt+c_{j}(\mathbf {w}) \cdot \sigma _{j} \cdot \sqrt{\lambda ^*_{j}(t)}dB_{j}(t), \end{aligned} \end{aligned}$$

where

$$\begin{aligned} \begin{aligned} c_{j}(\mathbf {w})&:=(w_{1} - w_3)\cdot a_{1j} + (w_{2} + w_3)\cdot a_{2j},\\ b_{j}(\mathbf {w})&:=-\frac{1}{2}\left( (w_{1} - w_{3}) \cdot a_{1j}^{2} + (w_{2} + w_{3})\cdot a_{2j}^{2}\right) ,\\ r(\mathbf {w})&:=(w_1 - w_3) \cdot \frac{r_{\textit{DOM}}-r_{\textit{FOR}_1}}{2} + (w_2 + w_3) \cdot \frac{r_{\textit{DOM}}-r_{\textit{FOR}_2}}{2}, \end{aligned} \end{aligned}$$
(17)

and \(\lambda ^*_{j}(t) :=c^2_{j}(\mathbf {w}) \cdot \lambda _{j}(t)\).

Due to the fact that \(\left\langle dW_j(t),dB_{j'}(t)\right\rangle = \left\langle dW_{j}(t),dW_{j'}(t)\right\rangle = \left\langle dB_{j}(t),dB_{j'}(t)\right\rangle = 0\) for all \(j\ne j'\) it can be shown that \(Z^*_{j}(t)\) and \(Z^*_{j'}(t)\) are independent.

As a Heston-type stochastic process, the characteristic function of \(Z^*_{j}(t)\) at time T conditional on \({\mathcal {F}}_t\) is given by

$$\begin{aligned} \varPhi _{Z_j^*}\left( \phi ,T \mid {\mathcal {F}}_t\right)= & {} E\left[ e^{i\phi Z_j^*(T)} \bigg | {\mathcal {F}}_t \right] \nonumber \\= & {} e^{C_{j}(\phi , T-t ) + D_{j}(\phi , T-t )\cdot \lambda ^*_j(t) + i\phi Z_j^*(t)}, \end{aligned}$$
(18)

where

$$\begin{aligned} \begin{aligned} C_{j}(\phi , T-t)&= r(\mathbf {w})\phi i\cdot (T-t) +\frac{\kappa _j \theta _j }{\sigma _j ^{2}}\\&\quad \left\{ (\kappa _j -\rho _j c_{j}(\mathbf {w})\sigma _j \phi i - d_{j})\cdot (T-t) - 2\ln \left[ \frac{1-g_{j} \cdot e^{-d_{j}\cdot (T-t) }}{1-g_{j}}\right] \right\} ,\\ D_{j}(\phi , T-t)&= \frac{\kappa _j -\rho _j c_{j}(\mathbf {w})\sigma _j \phi i-d_{j}}{{c^{2}_{j}(\mathbf {w})}\sigma _j^{2}}\left[ \frac{1-e^{-d_{j}\cdot (T-t) }}{1-g_{j} \cdot e^{- d_{j}\cdot (T-t) }}\right] ,\\ g_{j}&= \frac{\kappa _j -\rho _j c_{j}(\mathbf {w})\sigma _j \phi i - d_{j}}{\kappa _j -\rho _j c_{j}(\mathbf {w})\sigma _j \phi i + d_{j}},\\ d_{j}&= \sqrt{(\rho _j c_{j}(\mathbf {w}) \sigma _j \phi i - \kappa _j )^{2} + \sigma _j ^{2}\left( -2 b_{j}(\mathbf {w}) \phi i + {c^{2}_{j}(\mathbf {w})}\phi ^{2}\right) }, \end{aligned} \end{aligned}$$

with \(c_{j}(\mathbf {w}), b_{j}(\mathbf {w})\), and \(r(\mathbf {w})\) as in (17). Hence, for the conditional characteristic function it follows that

$$\begin{aligned} \varPhi _{\mathbf {X}}\left( \mathbf {w},T \mid {\mathcal {F}}_t\right)&= e^{i\mathbf {w}'{\mathbf {X}}(t)} \cdot E\left[ e^{i\mathbf {w}'\left( \mathbf {X}(T) - \mathbf {X}(t)\right) } \bigg | {\mathcal {F}}_t \right] \\&= e^{i\mathbf {w}'{\mathbf {X}}(t)} \cdot E\left[ e^{i \left( w_1\cdot \left( X^{\textit{FOR}_1 \text {-} \textit{DOM}}(T) - X^{\textit{FOR}_1 \text {-} \textit{DOM}}(t)\right) + w_2\cdot \left( X^{\textit{FOR}_2 \text {-} \textit{DOM}}(T) - X^{\textit{FOR}_2 \text {-} \textit{DOM}}(t)\right) \right. } \right. \\&\quad \left. {}^{\left. + w_3 \cdot \left( X^{\textit{FOR}_2 \text {-} \textit{FOR}_1}(T) - X^{\textit{FOR}_2 \text {-} \textit{FOR}_1}(t) \right) \right) } \bigg | {\mathcal {F}}_t \right] \\&= e^{i\mathbf {w}'{\mathbf {X}}(t)} \cdot E\left[ e^{i \left( \sum \limits _{j=1}^2 Z^*_{j}(T) - Z^*_{j}(t)\right) } \bigg | {\mathcal {F}}_t \right] \\&= e^{i\mathbf {w}'\mathbf {X}(t)} \cdot \prod \limits ^2_{j=1} E\left[ e^{i \left( Z^*_{j}(T) - Z^*_{j}(t)\right) } \bigg | {\mathcal {F}}_t \right] \\&= e^{i\mathbf {w}'\mathbf {X}(t)} \cdot \prod \limits ^2_{j=1} e^{- i Z^*_{j}(t)} E\left[ e^{i Z^*_{j}(T)} \bigg | {\mathcal {F}}_t \right] \\&= e^{i\mathbf {w}'\mathbf {X}(t)} \cdot \prod \limits ^2_{j=1} e^{C_{j}(1, T-t ) + D_{j}(1, T-t )\cdot \lambda _j(t)\cdot c^2_{j}(\mathbf {w})}, \end{aligned}$$

where the third equation holds due to the independence of \(Z^*_{1}(t)\) and \(Z^*_{2}(t)\). Moreover, with \(\phi = 1\) in Eq. (18) the desired form of the characteristic function is obtained.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escobar, M., Gschnaidtner, C. A multivariate stochastic volatility model with applications in the foreign exchange market. Rev Deriv Res 21, 1–43 (2018). https://doi.org/10.1007/s11147-017-9132-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11147-017-9132-8

Keywords

JEL Classification

Navigation