Skip to main content
Log in

Nickel oxide on mechanochemically synthesized TiO2–CeO2: photocatalytic and electrochemical activity

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

This paper presents a new two-step method for the synthesis of NiO/TiO2–CeO2 semiconductors, which implies, the first, the mechanochemical synthesis of TiO2–CeO2 support, and the second is the doping of different NiO contents by chemical precipitation in an aqueous medium in an ambient atmosphere. Structural, optical, electrochemical and photocatalytic properties of NiO/TiO2–CeO2 semiconductors were examined. The influence of different NiO contents on the electrocatalytic activity of NiO/TiO2–CeO2 samples was investigated in the oxygen evolution reaction and the results showed that the samples with the lowest NiO content have the highest electroactivity. The photocatalytic activity was determined during the phenol decomposition process over the samples with different NiO:TiO2–CeO2 ratios and the best photocatalytic activity is observed for the sample with 4.1 mol% NiO. The sample with the lowest NiO content obtained by a relatively simple method is suitable for use both as an electrode material in the oxygen evolution reaction and as a photocatalyst in the phenol decomposition process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pelaez M, Nolan NT, Pillai SC et al (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ 125:331–349. https://doi.org/10.1016/j.apcatb.2012.05.036

    Article  CAS  Google Scholar 

  2. Lin L, Wang H, Luo H, Xu P (2015) Enhanced photocatalysis using side-glowing optical fibers coated with Fe-doped TiO2 nanocomposite thin films. J Photochem Photobiol A Chem 307–308:88–98. https://doi.org/10.1016/j.jphotochem.2015.04.010

    Article  CAS  Google Scholar 

  3. Malengreaux CM, Pirard SL, Léonard G et al (2017) Study of the photocatalytic activity of Fe3+, Cr3+, La3+and Eu3+single-doped and co-doped TiO2 catalysts produced by aqueous sol-gel processing. J Alloys Compd 691:726–738. https://doi.org/10.1016/j.jallcom.2016.08.211

    Article  CAS  Google Scholar 

  4. Venkata Laxma Reddy P, Kim KH, Kim YH (2011) A review of photocatalytic treatment for various air pollutants. Asian J Atmos Environ 5:181–188. https://doi.org/10.5572/ajae.2011.5.3.181

    Article  CAS  Google Scholar 

  5. Sarkar B, Daware AV, Gupta P et al (2017) Nanoscale wide-band semiconductors for photocatalytic remediation of aquatic pollution. Environ Sci Pollut Res 24:25775–25797

    Article  CAS  Google Scholar 

  6. Niishiro R, Kato H, Kudo A (2005) Nickel and either tantalum or niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light response for H2 or O2 evolution from aqueous solutions. Phys Chem Chem Phys 7:2241–2245. https://doi.org/10.1039/b502147b

    Article  CAS  PubMed  Google Scholar 

  7. Fiorenza R, Sciré S, D’Urso L et al (2019) Efficient H2 production by photocatalytic water splitting under UV or solar light over variously modified TiO2-based catalysts. Int J Hydrog Energy 44:14796–14807. https://doi.org/10.1016/j.ijhydene.2019.04.035

    Article  CAS  Google Scholar 

  8. Mao J, Li K, Peng T (2013) Recent advances in the photocatalytic CO2 reduction over semiconductors. Catal Sci Technol 3:2481–2498

    Article  CAS  Google Scholar 

  9. Mills A, O’Rourke C, Moore K (2015) Powder semiconductor photocatalysis in aqueous solution: an overview of kinetics-based reaction mechanisms. J Photochem Photobiol A Chem 310:66–105. https://doi.org/10.1016/j.jphotochem.2015.04.011

    Article  CAS  Google Scholar 

  10. Likodimos V, Chrysi A, Calamiotou M et al (2016) Microstructure and charge trapping assessment in highly reactive mixed phase TiO2 photocatalysts. Appl Catal B Environ 192:242–252. https://doi.org/10.1016/j.apcatb.2016.03.068

    Article  CAS  Google Scholar 

  11. Balasubramanian G, Dionysiou DD, Suidan MT et al (2004) Evaluating the activities of immobilized TiO2 powder films for the photocatalytic degradation of organic contaminants in water. Appl Catal B Environ 47:73–84. https://doi.org/10.1016/j.apcatb.2003.04.002

    Article  CAS  Google Scholar 

  12. Mazabuel-Collazos A, Rodríguez-Páez JE (2018) Chemical synthesis and characterization of ZnO–TiO2 semiconductor nanocomposites: tentative mechanism of particle formation. J Inorg Organomet Polym Mater 28:1739–1752. https://doi.org/10.1007/s10904-018-0827-6

    Article  CAS  Google Scholar 

  13. de Mendonça VR, Avansi W, Arenal R, Ribeiro C (2017) A building blocks strategy for preparing photocatalytically active anatase TiO2/rutile SnO2 heterostructures by hydrothermal annealing. J Colloid Interface Sci 505:454–459. https://doi.org/10.1016/j.jcis.2017.06.024

    Article  CAS  PubMed  Google Scholar 

  14. Rožić L, Petrović S, Lončarević D et al (2019) Influence of annealing temperature on structural, optical and photocatalytic properties of TiO2-CeO2 nanopowders. Ceram Int. https://doi.org/10.1016/j.ceramint.2018.10.153

    Article  Google Scholar 

  15. Thejaswini TVL, Prabhakaran D, Maheswari MA (2017) Synthesis of mesoporous worm-like ZrO2–TiO2 monoliths and their photocatalytic applications towards organic dye degradation. J Photochem Photobiol A Chem 344:212–222. https://doi.org/10.1016/j.jphotochem.2017.05.015

    Article  CAS  Google Scholar 

  16. Wang T, Yang G, Liu J et al (2014) Orthogonal synthesis, structural characteristics, and enhanced visible-light photocatalysis of mesoporous Fe2O3/TiO2 heterostructured microspheres. Appl Surf Sci 311:314–323. https://doi.org/10.1016/j.apsusc.2014.05.060

    Article  CAS  Google Scholar 

  17. Navío JA, Colón G, Litter MI, Bianco GN (1996) Synthesis, characterization and photocatalytic properties of iron-doped titania semiconductors prepared from TiO2 and iron (III) acetylacetonate. J Mol Catal A Chem 106:267–276. https://doi.org/10.1016/1381-1169(95)00264-2

    Article  Google Scholar 

  18. Milenova K, Zaharieva K, Stambolova I, Blaskov V, Eliyas A, Dimitrov L (2017) Photocatalytic Performance of TiO2, CeO2, ZnO and TiO2-CeO2-ZnO in the Course of Methyl Orange Degradation. J. Chem. Technol. Metall. 52:13–19

    CAS  Google Scholar 

  19. Barakat MA, Schaeffer H, Hayes G, Ismat-Shah S (2005) Photocatalytic degradation of 2-chlorophenol by Co-doped TiO2 nanoparticles. Appl Catal B Environ 57:23–30. https://doi.org/10.1016/j.apcatb.2004.10.001

    Article  CAS  Google Scholar 

  20. Hyun Kim D, Sub Lee K, Kim Y-S et al (2006) Photocatalytic activity of Ni 8 wt%-doped TiO2 photocatalyst synthesized by mechanical alloying under visible light. J Am Ceram Soc 89:515–518. https://doi.org/10.1111/j.1551-2916.2005.00782.x

    Article  CAS  Google Scholar 

  21. Chen W-T, Chan A, Sun-Waterhouse D et al (2018) Performance comparison of Ni/TiO2 and Au/TiO2 photocatalysts for H2 production in different alcohol-water mixtures. J Catal 367:27–42. https://doi.org/10.1016/j.jcat.2018.08.015

    Article  CAS  Google Scholar 

  22. Hu C, Zhang L, Gong J (2019) Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy Environ Sci 12:2620–2645. https://doi.org/10.1039/c9ee01202h

    Article  CAS  Google Scholar 

  23. Petrović S, Rožić L, Jović V et al (2018) Optimization of a nanoparticle ball milling process parameters using the response surface method. Adv Powder Technol 29:2129–2139. https://doi.org/10.1016/j.apt.2018.05.021

    Article  CAS  Google Scholar 

  24. X-ray diffraction procedures: for polycrystalline and amorphous materials, 2nd edn. Wiley. https://www.wiley.com/en-us/X+Ray+Diffraction+Procedures%3A+For+Polycrystalline+and+Amorphous+Materials%2C+2nd+Edition-p-9780471493693. Accessed 21 Dec 2020

  25. Tauc J, Grigorovici R, Vancu A (1966) Optical properties and electronic structure of amorphous germanium. Phys status solidi 15:627–637. https://doi.org/10.1002/pssb.19660150224

    Article  CAS  Google Scholar 

  26. Hayati F, Isari AA, Fattahi M et al (2018) Photocatalytic decontamination of phenol and petrochemical wastewater through ZnO/TiO2 decorated on reduced graphene oxide nanocomposite: influential operating factors, mechanism, and electrical energy consumption. RSC Adv 8:40035–40053. https://doi.org/10.1039/c8ra07936f

    Article  CAS  Google Scholar 

  27. Lente G (2018) Facts and alternative facts in chemical kinetics: remarks about the kinetic use of activities, termolecular processes, and linearization techniques. Curr Opin Chem Eng 21:76–83

    Article  Google Scholar 

  28. Rahdar A, Aliahmad M, Azizi Y (2015) NiO Nanoparticles: synthesis and characterization. J Nanostruct 5:145–151. https://doi.org/10.7508/jns.2015.02.009

    Article  Google Scholar 

  29. Ren Y, Gao L (2010) From three-dimensional flower-like α-Ni(OH)2 nanostructures to hierarchical porous NiO nanoflowers: microwave-assisted fabrication and supercapacitor properties. J Am Ceram Soc 93:3560–3564. https://doi.org/10.1111/j.1551-2916.2010.04090.x

    Article  CAS  Google Scholar 

  30. Tang ZR, Zhang Y, Xu YJ (2011) A facile and high-yield approach to synthesize one-dimensional CeO2 nanotubes with well-shaped hollow interior as a photocatalyst for degradation of toxic pollutants. RSC Adv 1:1772–1777. https://doi.org/10.1039/c1ra00518a

    Article  CAS  Google Scholar 

  31. Rubinstein M, Kodama RH, Makhlouf SA (2001) Electron spin resonance study of NiO antiferromagnetic nanoparticles. J Magn Magn Mater 234:289–293. https://doi.org/10.1016/S0304-8853(01)00313-4

    Article  CAS  Google Scholar 

  32. Kortidis I, Swart HC, Ray SS, Motaung DE (2019) Characteristics of point defects on the room temperature ferromagnetic and highly NO2 selectivity gas sensing of p-type Mn3O4 nanorods. Sens Actuators B Chem 285:92–107. https://doi.org/10.1016/j.snb.2019.01.007

    Article  CAS  Google Scholar 

  33. Damyanova S, Pawelec B, Palcheva R et al (2018) Structure and surface properties of ceria-modified Ni-based catalysts for hydrogen production. Appl Catal B Environ 225:340–353. https://doi.org/10.1016/j.apcatb.2017.12.002

    Article  CAS  Google Scholar 

  34. Ganesh I, Gupta AK, Kumar PP et al (2012) Preparation and characterization of Ni-doped TiO2 materials for photocurrent and photocatalytic applications. Sci World J. https://doi.org/10.1100/2012/127326

    Article  Google Scholar 

  35. Dohcevic-Mitrovic Z, Stojadinović S, Lozzi L et al (2016) WO3/TiO2 composite coatings: structural, optical and photocatalytic properties. Mater Res Bull 83:217–224. https://doi.org/10.1016/j.materresbull.2016.06.011

    Article  CAS  Google Scholar 

  36. Medway SL, Lucas CA, Kowal A et al (2006) In situ studies of the oxidation of nickel electrodes in alkaline solution. J Electroanal Chem 587:172–181. https://doi.org/10.1016/j.jelechem.2005.11.013

    Article  CAS  Google Scholar 

  37. Rieck genannt Best F, Koch J, Lilienkamp G et al (2018) Spiky nickel electrodes for electrochemical oxygen evolution catalysis by femtosecond laser structuring. Int J Electrochem 2018:1–12. https://doi.org/10.1155/2018/9875438

    Article  CAS  Google Scholar 

  38. Seghiouer A, Chevalet J, Barhoun A, Lantelme F (1998) Electrochemical oxidation of nickel in alkaline solutions: a voltammetric study and modelling. J Electroanal Chem 442:113–123. https://doi.org/10.1016/S0022-0728(97)00498-1

    Article  CAS  Google Scholar 

  39. Wohlfahrt-Mehrens M, Oesten R, Wilde P, Huggins RA (1996) The mechanism of electrodeposition and operation of Ni(OH)2 layers. Solid State Ion 86–88:841–847. https://doi.org/10.1016/0167-2738(96)00192-0

    Article  Google Scholar 

  40. Fu XZ, Zhu YJ, Xu QC et al (2007) Nickel oxyhydroxides with various oxidation states prepared by chemical oxidation of spherical β-Ni(OH)2. Solid State Ion 178:987–993. https://doi.org/10.1016/j.ssi.2007.04.011

    Article  CAS  Google Scholar 

  41. Kim SS, Lee SM, Won JM et al (2015) Effect of Ce/Ti ratio on the catalytic activity and stability of Ni/CeO2-TiO2 catalyst for dry reforming of methane. Chem Eng J 280:433–440. https://doi.org/10.1016/j.cej.2015.06.027

    Article  CAS  Google Scholar 

  42. Luan C, Liu G, Liu Y et al (2018) Structure effects of 2D materials on α-nickel hydroxide for oxygen evolution reaction. ACS Nano 12:3875–3885. https://doi.org/10.1021/acsnano.8b01296

    Article  CAS  PubMed  Google Scholar 

  43. Cheng N, Liu Q, Tian J et al (2015) Nickel oxide nanosheets array grown on carbon cloth as a high-performance three-dimensional oxygen evolution electrode. Int J Hydrog Energy 40:9866–9871. https://doi.org/10.1016/j.ijhydene.2015.06.105

    Article  CAS  Google Scholar 

  44. Zhao Z, Wu H, He H et al (2014) A high-performance binary Ni-Co hydroxide-based water oxidation electrode with three-dimensional coaxial nanotube array structure. Adv Funct Mater 24:4698–4705. https://doi.org/10.1002/adfm.201400118

    Article  CAS  Google Scholar 

  45. Wang J, Zhong HX, Qin YL, Zhang XB (2013) An efficient three-dimensional oxygen evolution electrode. Angew Chem Int Ed 52:5248–5253. https://doi.org/10.1002/anie.201301066

    Article  CAS  Google Scholar 

  46. Parrino F, Loddo V, Augugliaro V et al (2019) Heterogeneous photocatalysis: guidelines on experimental setup, catalyst characterization, interpretation, and assessment of reactivity. Catal Rev Sci Eng 61:163–213. https://doi.org/10.1080/01614940.2018.1546445

    Article  CAS  Google Scholar 

  47. Lente G (2015) Deterministic kinetics in chemistry and systems biology—the dynamics of complex reaction networks. Springer International Publishing ISBN, p 978-3-319-15481-7

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant Nos. 451-03-9/2021-14/200026 and 451-03-9/2021-14/200146).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srdjan Petrović.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrović, S., Stanković, M., Pavlović, S. et al. Nickel oxide on mechanochemically synthesized TiO2–CeO2: photocatalytic and electrochemical activity. Reac Kinet Mech Cat 133, 1097–1110 (2021). https://doi.org/10.1007/s11144-021-02014-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02014-8

Keywords

Navigation