Skip to main content
Log in

Catalytic peroxide fractionation processes for the green biorefinery of wood

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A kinetic study and optimization of pine wood peroxide fractionation in the medium acetic acid–water over TiO2 catalyst were accomplished for the first time. Kinetic regularities and the product composition of green processes of catalytic peroxide fractionation of softwood (pine, abies, larch) and hardwood (aspen, birch) over 1 wt% TiO2 catalyst in the acetic acid–water medium were compared at the temperature range 70–100 °C. For all type of wood, the processes of peroxide delignification are described by the first order equations and their activation energies are varied at the range 76–94 kJ/mol. According to FTIR, XRD, SEM, NMR data, the cellulosic products of peroxide delignification have a structure similar to microcrystalline cellulose regardless of the nature of wood. Soluble products are presented by organic acid and monosaccharides. The scheme of green biorefinery of pine wood based on extractive-catalytic fractionation of wood biomass on microcrystalline cellulose, hemicelluloses, aromatic and aliphatic acids, monosaccharides, turpentine and rosin was developed. Green and non-toxic reagents and solid catalyst are used in the developed scheme of biorefinery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Introduction to Chemicals from Biomass (2008) Wiley series in renewable resources. John Wiley & Sons, Ltd, Chichester

    Google Scholar 

  2. Nelson V (2011) Introduction to renewable energy. Energy and the environment. CRS Press, London

    Google Scholar 

  3. Fengel D, Wegener G (1984) Wood chemistry, ultrastracture, reactions. Walter de Gruter, Berlin

    Google Scholar 

  4. Gallezot P (2007) Catalytic routes from renewables to fine chemicals. Catal Today 121(1):76–91

    Article  CAS  Google Scholar 

  5. Serrano-Ruiz JC, Dumesic JA (2011) Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels. Energy Environ Sci 4(1):83–99

    Article  CAS  Google Scholar 

  6. Besson M, Gallezot P, Pinel C (2014) Conversion of biomass into chemicals over metal catalysts. Chem Rev 114(3):1827–1870

    Article  CAS  PubMed  Google Scholar 

  7. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110(6):3552–3599

    Article  CAS  PubMed  Google Scholar 

  8. Cherubini F, Jungmeier G, Wellisch M, Willke T, Skiadas I, Ree RV, Jong ED (2009) Toward a common classification approach for biorefinery systems. Biofuels Bioprod Biorefining 3(5):534–546

    Article  CAS  Google Scholar 

  9. de Long E, Hidson A, Walsh P (2013) Task 42. Biorefinery. In: Report IEA bioenergy

  10. Tarabanko VE, Kaygorodov KL, Skiba EA, Tarabanko N, Chelbina YV, Baybakova OV, Kuznetsov BN, Djakovitch L (2017) Processing pine wood into vanillin and glucose by sequential catalytic oxidation and enzymatic hydrolysis. J Wood Chem Technol 37(1):43–51

    Article  CAS  Google Scholar 

  11. Van den Bosch S, Schutyser W, Vanholme R, Driessen T, Koelewijn SF, Renders T, De Meester B, Huijgen WJJ, Dehaen W, Courtin CM, Lagrain B, Boerjan W, Sels BF (2015) Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps. Energy Environ Sci 8(6):1748–1763

    Article  CAS  Google Scholar 

  12. Galkin MV, Samec JSM (2016) Lignin valorization through catalytic lignocellulose fractionation: a fundamental platform for the future biorefinery. ChemSusChem 9:1544–1558

    Article  CAS  PubMed  Google Scholar 

  13. Anderson EM, Katahira R, Reed M, Resch MG, Karp EM, Beckham GT, Román-Leshkov Y (2016) Reductive catalytic fractionation of corn stover lignin. ACS Sustain Chem Eng 4(12):6940–6950

    Article  CAS  Google Scholar 

  14. Kuznetsov BN, Sudakova IG, Garyntseva NV, Djakovitch L, Pinel C (2017) Kinetic studies and optimization of abies wood fractionation by hydrogen peroxide under mild conditions with TiO2 catalyst. Reac Kinet Mech Cat 120(1):81–94

    Article  CAS  Google Scholar 

  15. Kuznetsov BN, Chesnokov NV, Yatsenkova OV, Sharypov VI, Garyntseva NV, Ivanchenko NM, Yakovlev VA (2017) Green catalytic valorization of hardwood biomass into valuable chemicals with the use of solid catalysts. Wood Sci Technol 51(5):1189–1208

    Article  CAS  Google Scholar 

  16. Kuznetsov BN, Sudakova IG, Garyntseva NV, Levdansky VA, Ivanchenko NM, Pestunov AV, Djakovitch L, Pinel C (2018) Green biorefinery of larch wood biomass to obtain the bioactive compounds, functional polymers and nanoporous materials. Wood Sci Technol 52(5):1377–1394

    Article  CAS  Google Scholar 

  17. Sjöström E, Alén R (1999) Analytical methods in wood chemistry, pulping and papermaking. Springer Series in Wood Science. Springer, Berlin

    Book  Google Scholar 

  18. Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3(1):10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Trache D, Hussin MH, Hui Chuin CT, Sabar S, Fazita MRN, Taiwo OFA, Hassan TM, Haafiz MKM (2016) Microcrystalline cellulose: isolation, characterization and bio-composites application—a review. Int J Biol Macromol 93:789–804

    Article  CAS  PubMed  Google Scholar 

  20. Suchy M, Argyropoulos D (2002) Catalysis and activation of oxygen and peroxide delignification of chemical pulps: a review. Tappi 1(2):1–18

    Google Scholar 

  21. Kuznetsov BN, Sudakova IG, Garyntseva NV, Djakovitch L, Pinel C (2013) Kinetic study of aspen-wood sawdust delignification by H2O2 with sulfuric acid catalyst under mild conditions. Reac Kinet Mech Cat 110(2):271–280

    Article  CAS  Google Scholar 

  22. Kuznetsov BN, Chesnokov NV, Garyntseva NV, Sudakova IG, Pestunov AV, D’yakovich L, Pinel’ K (2018) Kinetic study and optimization of catalytic peroxide delignification of aspen wood. Kinet Catal 59(1):48–57

    Article  CAS  Google Scholar 

  23. Kuznetsov BN, Chesnokov NV, Sudakova IG, Garyntseva NV, Kuznetsova SA, Malyar YN, Yakovlev VA, Djakovitch L (2018) Green catalytic processing of native and organosolv lignins. Catal Today 309:18–30

    Article  CAS  Google Scholar 

  24. Hu F, Jung S, Ragauskas A (2012) Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresour Technol 117:7–12

    Article  CAS  PubMed  Google Scholar 

  25. Adel AM, Abd El-Wahab ZH, Ibrahim AA, Al-Shemy MT (2011) Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part II: physicochemical properties. Carbohydr Polym 83(2):676–687

    Article  CAS  Google Scholar 

  26. Fan M, Dai D, Huang B (2012) Fourier transform infrared spectroscopy for natural fibres. In: Salih S (ed) International conference on innovative technologies (IN-TECH 2012). Rejeka, Croatia, pp 45–68

    Google Scholar 

  27. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082

    Article  CAS  PubMed  Google Scholar 

  28. Vasiliu-Oprea C, Nicoleanu J (1993) Micronized (and microcrystalline) celluloses. Obtainment and fields of application. Polym Plast Technol Eng 32(3):181–214

    Article  CAS  Google Scholar 

  29. Wikberg H, Liisa Maunu S (2004) Characterisation of thermally modified hard- and softwoods by 13C CPMAS NMR. Carbohydr Polym 58(4):461–466

    Article  CAS  Google Scholar 

  30. Zuckerstatter G, Schild G, Wollboldt P, Roeder T, Weber HK, Sixta H (2009) The elucidation of cellulose supramolecular structure by 13C CP-MAS NMR. Lenzing Ber 87:38–46

    Google Scholar 

  31. Liu D, Chen EYX (2014) Integrated catalytic process for biomass conversion and upgrading to C12 furoin and alkane fuel. ACS Catal 4(5):1302–1310

    Article  CAS  Google Scholar 

  32. Schutyser W, Renders T, Van den Bosch S, Koelewijn SF, Beckham GT, Sels BF (2018) Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev 47(3):852–908

    Article  CAS  PubMed  Google Scholar 

  33. Alonso DM, Hakim SH, Zhou S, Won W, Hosseinaei O, Tao J, Garcia-Negron V, Motagamwala AH, Mellmer MA, Huang K, Houtman CJ, Labbé N, Harper DP, Maravelias CT, Runge T, Dumesic JA (2017) Increasing the revenue from lignocellulosic biomass: maximizing feedstock utilization. Sci Adv 3(5):e1603301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Silvestre AJ, Gandini A (2008) Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam

    Google Scholar 

  35. Mercier B, Prost J, Prost M (2009) The essential oil of turpentine and its major volatile fraction (α- and β-pinenes): a review. Int J Occup Med Environ Health 22(4):331–342

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work is a part of GDRI “Biomass” between France and Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Kuznetsov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, B.N., Sudakova, I.G., Garyntseva, N.V. et al. Catalytic peroxide fractionation processes for the green biorefinery of wood. Reac Kinet Mech Cat 126, 717–735 (2019). https://doi.org/10.1007/s11144-018-1518-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-018-1518-6

Keywords

Navigation