Skip to main content
Log in

Kinetic studies of methanol dehydrogenation. Part I: copper-silica catalysts

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A series of Cu/SiO2 catalysts was prepared using incipient wetness impregnation of silica gel with an aqueous solution of copper nitrate. The copper loading was 5 wt%. After the calcination, the catalyst was reduced in a hydrogen flow at varied temperatures (200, 300, and 400 °C). A conventional fixed bed reactor system was used to study the kinetics of methanol dehydrogenation to methyl formate. Methyl formate decomposition to carbon monoxide and hydrogen was taken into account as a main side reaction. Observable rate constants were determined. The temperature of reductive pretreatment of the catalysts was shown to affect strongly their catalytic behavior in the studied reaction. The highest methyl formate yield was achieved for the sample reduced at 200 °C. An increase of reduction temperature up to 400 °C worsens the selectivity towards the main product in approximately by a factor of 2. The kinetic parameters obtained were used for modelling the process in a tubular reactor. Good agreement of theoretical and experimental data was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Ci :

Concentration of component i (kmol m−3)

cp :

Heat capacity (kJ g−1 K−1)

Dei :

Effective coefficient of radial diffusion of i-component (m2 s−1)

−∆Hj :

Heat effect of reaction j (kJ mol−1)

Keq :

Equilibrium constant

l:

Length of reactor (m)

N:

Number of components in a mixture

NR :

Number of reactions

P0 :

Pressure at normal conditions (atm)

R1 :

Radius of reactor (m)

r:

Radial coordinate in fixed bed catalyst (m)

R:

Universal gas constant (J mol−1 K−1)

S:

Selectivity (%)

T:

Temperature (K)

T0 :

Temperature at normal conditions (K)

Tw :

Temperature of the wall (K)

ul :

Axial velocity (m s−1)

wj :

Rate of reaction j (kmol kg −1cat  s−1)

X:

Conversion (%)

\(\text{Re}_{e}\) :

Reynolds number, \(\text{Re}_{e} = v_{e} d_{e} \rho_{g} /\mu\)

\(Sc\) :

Schmidt number (diffusion Prandtl’s criterion), \(Sc = \mu /(\rho_{g} D_{m} )\)

\(\Pr\) :

Prandtl number, \(\Pr = \mu \,c_{p} /\lambda_{g}\)

α:

Heat-transfer coefficient between the exterior wall of reactor and fixed bed catalyst (kJ m−2 s−1 K−1)

ε:

Porosity of the catalyst layer

γij :

Stoichiometric coefficient for component i in reaction j

λef :

Effective coefficient of radial thermal conductivity (J m−1 s−1 K−1)

τc :

Contact time (s)

ρG :

Density of the gas mixture (kg m−3)

ρk :

Density of the catalyst (kg m−3)

References

  1. Lee JS, Kim JC, Kim YG (1990) Appl Catal 57:1–30

    Article  CAS  Google Scholar 

  2. Shreiber EH, Roberts GW (2000) Appl Catal B-Environ 26:119–129

    Article  CAS  Google Scholar 

  3. Zhang R, Sun Y, Peng S (2002) Fuel 81:1619–1624

    Article  CAS  Google Scholar 

  4. Egorova EV, Antonyuk SN, Trusov AI, Nutmanov ER, Gureeva AY (2002) In: Proceedings of Reaktiv-2002. Reaktiv, Ufa, pp 196–198 (in Russian)

  5. Tonner SP, Trimm DL, Walnwright MS (1984) Ind Eng Chem Prod Res Dev 23:384–388

    Article  CAS  Google Scholar 

  6. Ai M (1984) Appl Catal 11:259–270

    Article  CAS  Google Scholar 

  7. Sodesawa T (1984) React Kinet Catal Lett 24:259–266

    Article  CAS  Google Scholar 

  8. Huang X, Cant NW, Wainwright MS, Ma L (2005) Chem Eng Process 44:393–402

    CAS  Google Scholar 

  9. Minyukova TP, Simentsova II, Khasin AV, Shtertser NV, Baronskaya NA, Khassin AA, Yurieva TM (2002) Appl Catal A-Gen 237:171–180

    Article  CAS  Google Scholar 

  10. Guerreiro ED, Gorriz OF, Rivarola JB, Arrúa LA (1997) Appl Catal A-Gen 165:259–271

    Article  CAS  Google Scholar 

  11. Guerreiro ED, Gorriz OF, Larsen G, Arrúa LA (2000) Appl Catal A-Gen 204:33–48

    Article  CAS  Google Scholar 

  12. Matsuda T, Yogo K, Pantawong C, Kikuchi E (1995) Appl Catal A-Gen 126:177–186

    Article  CAS  Google Scholar 

  13. Jung KD, Joo OS (2002) Catal Lett 84:21–25

    Article  CAS  Google Scholar 

  14. Guerrero-Ruiz A, Rodriguez-Ramos I, Fierro JLG (1991) Appl Catal 72:119–137

    Article  CAS  Google Scholar 

  15. Lu Z, Gao D, Yin H, Wang A, Liu S (2015) J Ind Eng Chem 31:301–308

    Article  CAS  Google Scholar 

  16. Lender YV, Krasnyanskaya AG, Leleka VE, Nesterenko NT (1985) Khim Prom 2:12–13 (in Russian)

    Google Scholar 

  17. Cant NW, Tonner SP, Trimm DL, Wainwright MS (1985) J Catal 91:197–207

    Article  CAS  Google Scholar 

  18. Gorshkov SV, Lin GI, Rozovskii AY (1999) Kinet Katal 40:372–375 (in Russian)

    Google Scholar 

  19. Gorshkov SV, Lin GI, Rozovskii AY, Serov YM, Um SJ (1999) Kinet Katal 40:104–110 (in Russian)

    Google Scholar 

  20. Guo Y, Lu G, Mo X, Wang Y (2005) Catal Lett 99:105–108

    Article  CAS  Google Scholar 

  21. Bakhtyari A, Mohammadi M, Rahimpour MR (2015) J Nat Gas Sci Eng 26:595–607

    Article  CAS  Google Scholar 

  22. Shelepova EV, Vedyagin AA, Mishakov IV, Noskov AS (2011) Chem Eng J 176–177:151–157

    Article  Google Scholar 

  23. Shelepova EV, Vedyagin AA, Mishakov IV, Noskov AS (2015) Int J Hydrogen Energ 40:3592–3598

    Article  CAS  Google Scholar 

  24. Lente G (2015) J Math Chem 53:1172–1183

    Article  CAS  Google Scholar 

  25. Vedyagin A, Kotolevich Y, Tsyrulʹnikov P, Khramov E, Nizovskii A (2016) Int J Nanotechnol 13:185–199

    Article  Google Scholar 

  26. Stull DR, Westrum EF, Sinke GC (1969) The Chemical Thermodynamics of Organic Compounds. Wiley, New York

    Google Scholar 

Download references

Acknowledgements

This work was supported by Russian Foundation for Basic Research (grant number 16-38-00095).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksey A. Vedyagin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 56 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shelepova, E.V., Ilina, L.Y. & Vedyagin, A.A. Kinetic studies of methanol dehydrogenation. Part I: copper-silica catalysts. Reac Kinet Mech Cat 120, 449–458 (2017). https://doi.org/10.1007/s11144-016-1135-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-016-1135-1

Keywords

Navigation