Skip to main content
Log in

Synthesis of iron oxide catalysts using various methods for the spin conversion of hydrogen

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A series of α-Fe2O3 catalysts were synthesized using various methods such as incipient wetness impregnation, soft templating, hard templating, precipitation and citrate sol–gel. The surface morphology and crystallite sizes were characterized by SEM, XRD and Raman spectroscopy. The spin conversion of ortho hydrogen to para hydrogen was studied using in situ FTIR spectroscopy at cryogenic temperature (17 K). The spin conversion was very slow and time dependent. The spin conversion was also strongly dependent on the crystallite size of α-Fe2O3 and the methods of synthesis. The catalyst synthesized by precipitation method possessed the highest spin conversion ~99.9 % after 45 min of interaction. The catalyst synthesized by templating methods showed average activity. The catalyst synthesized by the citrate sol–gel method showed very poor activity due to formation of larger crystallite sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Su D, Kim H-S, Kim W-S, Wang G (2012) Synthesis of tuneable porous hematites (α-Fe2O3) for gas sensing and lithium storage in lithium ion batteries. Microporous Mesoporous Mater 149:36–45

    Article  CAS  Google Scholar 

  2. Zou M, Li J, Wen W, Chen L, Guan L, Lai H, Huang Z (2014) Silver-incorporated composites of Fe2O3 carbon nanofibers as anodes for high-performance lithium batteries. J Power Sources 270:468–474

    Article  CAS  Google Scholar 

  3. Ryu HS, Kim JS, Guo Z, Liu H, Kim KW, Ahn HH, Ahn HJ (2010) Electrochemical properties of Fe2O3 film fabricated by electrostatic spray deposition for lithium-ion batteries. Phys Scr T 139:014066–014071

    Google Scholar 

  4. Wang L, Xu HW, Chen PC, Zhang DW, Ding CH, Chen CH (2009) Electrostatic spray deposition of porous Fe2O3 thin films as anode material with improved electrochemical performance for lithium-ion batteries. J Power Sources 193:846–850

    Article  CAS  Google Scholar 

  5. Luca C-D, Massa P, Fenoglio R, Cabello FM (2014) Improved Fe2O3/Al2O3 as heterogeneous fenton catalysts for the oxidation of phenol solutions in a continuous reactor. J Chem Technol Biotechnol 89:1121–1128

    Article  Google Scholar 

  6. Routray K, Zhou W, Kiely CJ, Wachs IE (2011) Catalysis science of methanol oxidation over iron vanadate catalysts: nature of the catalytic active sites. ACS Catal 1:54–66

    Article  CAS  Google Scholar 

  7. Spoto G, Vitillo JG, Cocina D, Damin A, Bonino F, Zecchina A (2007) FTIR spectroscopy and thermodynamics of hydrogen adsorbed in a cross-linked polymer. Phys Chem Chem Phys 9:4992–4999

    Article  CAS  Google Scholar 

  8. Hovener J-B, Bar S, Leupold J, Jenne K, Leibfritz D, Hennig J, Duckett SB, Elverteldt DV (2013) A continueous-flow, high-throughput, high-pressure parahydrogen converter for hyperpolarization in a clinical setting. NMR Biomed 26:124–131

    Article  Google Scholar 

  9. Hovener J-B, Schwaderlapp N, Borowiak R, Lickert T, Duckett SB, Mewis RE, Adams RW, Burns MJ, Highton LAR, Green GGR, Olaru A, Hennig J, Elverfeldt DV (2014) Toward biocompatible nuclear hyperpolarization using signal amplification by reversible exchange: quantitative in situ spectroscopy and high-field imaging. Anal Chem 86:1767–1774

    Article  Google Scholar 

  10. Hovener J-B, Chekmenev EY, Harris KC, Perman WH, Robertson LW, Ross BD, Bhattacharya P (2009) PASADENA hyperpolarization of 13C biomolecules: equipment design and installation. Magn Reson Mater Phys 22:111–121

    Article  CAS  Google Scholar 

  11. Chekmenev EY, Hovener J, Norton VA, Harris K, Batchelder LS, Bhattacharya P, Ross BD, Weitekamp DP (2008) PASADENA hyperpolarization of succinic acid for MRI and NMR spectroscopy. J Am Chem Soc 130:4212–4213

    Article  CAS  Google Scholar 

  12. Tam S, Fajardo ME (1999) Ortho/para hydrogen converter for rapid deposition matrix isolation spectroscopy. Rev Sci Instrum 70(4):1926–1932

    Article  CAS  Google Scholar 

  13. Andrews L, Wang X (2004) Simple ortho-para hydrogen and para-ortho deuterium converter for matrix isolation spectroscopy. Rev Sci Instrum 75(9):3039–3044

    Article  CAS  Google Scholar 

  14. Cuong ND, Hoa ND, Hoa TT, Khieu DQ, Quang DT, Quang VV, Hieu NV (2014) Nanoporous hematite nanoparticles: synthesis and applications for benzylation of benzene and aromatic compounds. J Alloy Compd 582:83–87

    Article  Google Scholar 

  15. Shi W, Li J (2013) A new deactivation mechanism of sulfate-promoted iron oxide. Catal Lett 143:1285–1293

    Article  CAS  Google Scholar 

  16. Mishra A, Prasad R (2014) Preparation and application of perovskite catalysts for diesel soot emissions control: an overview. Catal Rev Sci Eng 56:57–81

    Article  CAS  Google Scholar 

  17. Asada T, Kayama T, Kusaba H, Einaga H, Teraoka Y (2008) Preparation of alumina-supported LaFeO3 catalysts and their catalytic activity for propane combustion. Catal Today 139:37–42

    Article  CAS  Google Scholar 

  18. Thirumalairajan S, Girija K, Hebalkar NY, Mangalaraj D, Viswanathan C, Ponpandian N (2013) Shape evolution of perovskite LaFeO3 nanostructures: a systematic investigation of growth mechanism, properties and morphology dependent photocatalytic activities. RSC Adv 3:7549–7561

    Article  CAS  Google Scholar 

  19. Leon L, Bustamante A, Osorio A, Olarte GS, Valladares LDLS, Barnes CHW, Majima Y (2011) Synthesis and characterization of hollow α-Fe2O3 sub-micron spheres prepared by sol–gel. Hyperfine Interact 202:131–137

    Article  CAS  Google Scholar 

  20. Bagheri S, Chandrappa KG, Hamid SBA (2013) Generation of hematite nanoparticles via sol–gel method. Res J Chem Sci 3(7):62–68

    CAS  Google Scholar 

  21. Kumar P, Singh RK, Rawat N, Barman PB, Katyal SC, Jang H, Lee H-N, Kumar R (2013) A novel method for controlled synthesis of nanosized hematite (α-Fe2O3) thin film on liquid–vapor interface. J Nanopart Res 15(1532):1–13

    Article  CAS  Google Scholar 

  22. Rafiee E, Eavani S (2011) H3PW12O40 supported on silica-encapsulated γ-Fe2O3 nanoparticles: a novel magnetically-recoverable catalyst for three-component Mannich-type reactions in water. Green Chem 13:2116–2122

    Article  CAS  Google Scholar 

  23. Jiao F, Harrison A, Jumas J-C, Chadwick AV, Kockelmann W, Bruce PG (2006) Ordered mesoporous Fe2O3 with crystalline walls. J Am Chem Soc 128:5468–5474

    Article  CAS  Google Scholar 

  24. Mir N, Bahrami M, Safari E, Mashkani SMH (2014) Fluorescent superparamagnetic γ-Fe2O3 hollow nanoparticles: synthesis and surface modification by one-pot co-precipitation method. J Clust Sci. doi:10.1007/s10876-014-0800-7

    Google Scholar 

  25. Srivastava DN, Perkas N, Gedanken A, Felner I (2002) Sonochemical synthesis of mesoporous iron oxide and accounts of its magnetic and catalytic properties. J Phys Chem B 106:1878–1883

    Article  CAS  Google Scholar 

  26. Wang F, Qin XF, Meng YF, Guo ZL, Yang LX, Ming YF (2013) Hydrothermal synthesis and characterization of α-Fe2O3 nanoparticles. Mater Sci Semicond Process 16:802–806

    Article  CAS  Google Scholar 

  27. Quy NV, Hung TM, Thong TQ, Tuan LA, Huy TQ, Hoa ND (2013) Novel synthesis of highly ordered mesoporous Fe2O3/SiO2 nanocomposites for a room temperature VOC sensor. Curr Appl Phys 13:1581–1588

    Article  Google Scholar 

  28. Lili Z, Guangrong L, Jinlin L (2009) Effect of La2O3 on a precipitated iron catalyst for fischer-tropsch synthesis. Chin J Catal 30(7):637–642

    Article  Google Scholar 

  29. Chaudhari S, Bhattacharjya D, Yu J-S (2013) 1-dimensional porous α-Fe2O3 nanorods as high performance electrode material for supercapacitors. RSC Adv 3:25120–25128

    Article  CAS  Google Scholar 

  30. Au-Yeung SCF, Denes G, Greedan JE, Eaton DR (1994) A novel synthetic route to iron trihydroxide, Fe(OH)3: characterization and magnetic properties. Inorg Chem 23:1513–1517

    Article  Google Scholar 

  31. Yagita N, Oaki Y, Imai H (2013) A microbial mineralization approach for syntheses of iron oxides with a high specific surface area. Chem Eur J 19:4419–4422

    Article  CAS  Google Scholar 

  32. Du M, Xu C, Sun J, Gao L (2013) Synthesis of α-Fe2O3 nanoparticles from Fe(OH)3 sol and their composite with reduced graphine oxide for lithium ion batteries. J Mater Chem A 1:7154–7158

    Article  CAS  Google Scholar 

  33. Sun P, You L, Wang D, Sun Y, Ma J, Lu G (2011) synthesis and gas sensing properties of bundle-like α-Fe2O3 nanorods. Sensors and Actuators B 156:368–374

    Article  CAS  Google Scholar 

  34. Mascolo MC, Pei Y, Ring TA (2013) Room temperature co-precipitation synthesis of magnetite nanoparticles in a large pH window with different bases. Materials 6:5549–5567

    Article  CAS  Google Scholar 

  35. Zhang G-Y, Feng Y, Xu Y-Y, Gao D-Z, Sun Y-Q (2012) Controlled synthesis of mesoporous α-Fe2O3 nanorods and visible light photocatalytic property. Mater Res Bull 47:625–630

    Article  CAS  Google Scholar 

  36. Han L, Shan Z, Chen D, Yu X, Yang P, Tu B, Zhao D (2008) Mesoporous Fe2O3 microspheres: rapid and effective enrichment of phosphopeptides for MALDI-TOF MS analysis. J Colloid Interface Sci 318:315–321

    Article  CAS  Google Scholar 

  37. Roshan AH, Vaezi MR, Shokuhfar A, Rajabali Z (2011) Synthesis of iron oxide nanoparticles via sonochemical method and their characterization. Particuology 9:95–99

    Article  Google Scholar 

  38. Xiao Z, Xia Y, Ren Z, Liu Z, Xu G, Chao C, Li X, Shen G, Han G (2012) Facile synthesis of single-crystalline mesoporousα-Fe2O3 and Fe3O4 nanorods as anode materials for lithium-ion batteries. J Mater Chem 22:20566–20573

    Article  CAS  Google Scholar 

  39. Takenaka S, Serizawa M, Otsuka K (2004) Formation of filamentous carbons over supported Fe catalysts through methane decomposition. J Catal 222:520–531

    Article  CAS  Google Scholar 

  40. Das T, Sengupta S, Deo G (2013) Effect of calcination temperature during the synthesis of Co/Al2O3 catalyst used for the hydrogenation of CO2. Reac Kinet Mech Cat 110:147–162

    Article  CAS  Google Scholar 

  41. Han Y-S, Yoon SM, Kim D-K (2000) Synthesis of monodispersed and spherical SiO2-coated Fe2O3 nanoparticle. Bull Korean Chem Soc 21:1193–1198

    CAS  Google Scholar 

  42. Wang X, Jia J, Zhao L, Sun T (2008) Mesoporous SBA-15 supported iron oxide: a potent catalyst for hydrogen sulfide removal. Water Air Soil Pollut 193:247–257

    Article  CAS  Google Scholar 

  43. Su H, Jing L, Shi K, Yao C, Fu H (2010) Synthesis of large surface area LaFeO3 nanoparticles by SBA-16 template method as high active visible photocatalysts. J Nanopart Res 12:967–974

    Article  CAS  Google Scholar 

  44. Morris SM, Fulvio PF, Jaroniec M (2008) Order mesoporous alumina-supported metal oxides. J Am Chem Soc 130:15210–15216

    Article  CAS  Google Scholar 

  45. Yuan Q, Yin A-X, Luo C, Sun L-D, Zhang Y-W, Duan W-T, Liu H-C, Yan C-H (2008) Facile synthesis for ordered mesoporous γ-alumin as with high thermal stability. J Am Chem Soc 130:3465–3472

    Article  CAS  Google Scholar 

  46. Shee D, Sayari A (2010) Light alkane dehydrogenation over mesoporous Cr2O3/Al2O3 catalysts. Appl Catal A 389:155–164

    Article  CAS  Google Scholar 

  47. Chen J, Xu L, Li W, Gou X (2005) α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv Mater 17(5):582–586

    Article  CAS  Google Scholar 

  48. Zhao J, Liu Y, Li X, Lu G, You L, Liang X, Liu F, Zhang T, Du Y (2013) Highly sensitive humidity sensor based on high surface area mesoporous LaFeO3 prepared by a nanocasting route. Sens Actuators B 181:802–809

    Article  CAS  Google Scholar 

  49. Zhu J, Ouyang X, Lee M-Y, Davis RC, Scott SL, Fischer A, Thomas A (2012) Two-step synthesis of Fe2O3 and Co3O4 nanoparticles: towards a general method for synthesizing nanocrystalline metal oxides with high surface area and thermal stability. RSC Adv 2:121–124

    Article  CAS  Google Scholar 

  50. Mihai O, Raaen S, Chen D, Holmen A (2013) Preparation of stable cubic LaFeO3 nanoparticles using carbon nanotubes as templates. J Mater Chem A 1:7006–7011

    Article  CAS  Google Scholar 

  51. Wan Y, Zhao D (2007) On the controllable soft-templating approach to mesoporous silicates. Chem Rev 107(7):2821–2860

    Article  CAS  Google Scholar 

  52. Xu C, Teja AS (2008) Continuous hydrothermal synthesis of iron oxide and PVA-protected iron oxide nanoparticles. J Supercrit Fluids 44:85–91

    Article  CAS  Google Scholar 

  53. Xhu J, Kailasam K, Schomaecker R, Thomas A (2011) High surface area SBA-15 with enhanced mesoporous connectivity by the addition of poly (vinyl alcohol). Chem Mater 23:2062–2067

    Article  Google Scholar 

  54. Zhu J, Xie X, Carabinerio SAC, Tavares PB, Figueiredo JL, Schomacker R, Thomas A (2011) Facile one-pot synthesis of Pt nanoparticles/SBA-15: an active and stable materials for catalytic applications. Energy Environ Sci 4:2020–2024

    Article  CAS  Google Scholar 

  55. Li Y, Feng Z, Lian Y, Sun K, Zhang L, Jia G, Yang Q, Li C (2005) Direct synthesis of highly ordered Fe-SBA-15 mesoporous materials under weak acidic conditions. Microporous Mesoporous Mater 84:41–49

    Article  CAS  Google Scholar 

  56. Xiao P, Hong J, Wang T, Xu X, Yuan Y, Li J, Zhu J (2013) Oxidative degradation of organic dyes over supported perovskite oxide LaFeO3/SBA-15 under ambient conditions. Catal Lett 143:887–894

    Article  CAS  Google Scholar 

  57. Sun X, Ji H, Li X, Cai S, Zheng C (2014) Open-system nanocasting synthesis of nanoscale α-Fe2O3 porous structure with enhanced acetone-sensing properties. J Alloy Compd 600:111–117

    Article  CAS  Google Scholar 

  58. Mandal S, Muller AHE (2008) Facile route to the synthesis of porous α-Fe2O3 nanorods. Materials Chemistry of Physics 111:438–443

    Article  CAS  Google Scholar 

  59. Pal N, Bhaumik A (2013) Soft templating strategies for the synthesis of mesoporous materials: inorganic, organic-inorganic hybrid and purely organic solids. Adv Colloid Interface Sci 189–190:21–41

    Article  Google Scholar 

  60. Petitpas G, Aceves SM, Matthews MJ, Smith JR (2014) ParaH2 to Ortho-H2 conversion in a full-scale automotive cryogenic pressurized hydrogen storage up to 345 bar. Int J Hydrog Energy 39:6533–6547

    Article  CAS  Google Scholar 

  61. Stewart AT, Squires GL (1955) Analysis of ortho and para-hydrogen mixtures by the thermal conductivity method. J Sci Instrum 32:26–29

    Article  CAS  Google Scholar 

  62. Fujiwara H, Yamabe J, Nishimura S (2010) Determination of Chemical shift of gas-phase hydrogen molecules by 1H nuclear magnetic resonance. Chem Phys Lett 498:42–44

    Article  CAS  Google Scholar 

  63. Das T, Kweon S-C, Choi J-G, Kim SY, Oh I-H (2015) Spin conversion of hydrogen over LaFeO 3/Al 2 O 3 catalysts at low temperature: Synthesis, characterization and activity. Int J Hydrog Energy 40:383–391

    Article  CAS  Google Scholar 

  64. Das T, Kweon SC, Nah IW, Karng SW, Choi JG, Oh I-H (2015) Spin conversion of hydrogen using supported iron catalysts at cryogenic temperature. Cryogenics 69:36–43

    Article  CAS  Google Scholar 

  65. Guo L, Ida S, Hagiwara H, Daio T, Ishihara T (2014) Direct soft-templating route to crystalline mesoporous transition-metal oxides. Colloids Surf A 451:136–143

    Article  CAS  Google Scholar 

  66. Ziyadi H, Heydari A, Rezayat SM (2014) Preparation and characterization of magnetic α-Fe2O3 nanofibers coated with uniform layers of silica. Ceram Int 40:5913–5919

    Article  CAS  Google Scholar 

  67. Sun B, Horvat J, Kim HS, Kim W-S, Ahn J, Wang G (2010) Synthesis of mesoporousα-Fe2O3 nanostructures for highly sensitive gas sensors and high capacity anode materials in lithium ion batteries. J Phys Chem C 114:18753–18761

    Article  CAS  Google Scholar 

  68. Abdulkadir I, Aliyu AB (2013) Some wet routes for synthesis of hematite nanostructures. Afr J Pure Appl Chem 7(3):114–121

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research work was supported by the Convergence Research Center Program funded by the Ministry of Future Creation and Science (2013K000402), South Korea. In particular, Prof. Choi appreciates Hannam University for supporting during the period starting from April 1, 2016 through March 31, 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taraknath Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, T., Nah, I.W., Choi, JG. et al. Synthesis of iron oxide catalysts using various methods for the spin conversion of hydrogen. Reac Kinet Mech Cat 118, 669–681 (2016). https://doi.org/10.1007/s11144-016-1035-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-016-1035-4

Keywords

Navigation