Skip to main content
Log in

Convenient graphene based materials as potential candidates for low cost fuel cell catalysts

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

An Erratum to this article was published on 23 March 2016

Abstract

A new and simple synthesis method of Pt nanoparticles supported on graphene materials, as potential candidates for low temperature fuel cell application, has been developed and discussed in detail. Graphene and Pt supported on graphene nano-sheets have been chemically prepared using a soft reduction method via a sequence of preparation steps based on chemical oxidation of graphite and graphene oxide exfoliation. In order to avoid the tendency of formation of irreversible agglomerates and even to restack in graphite form during the conventional drying process, a new effective drying method was proposed. By optimizing the drying process, this barrier was passed and an exceptional surface area for graphite oxide (206 m2/g) was obtained, which could provide new directions into the fabrication of graphene materials. Using several characterization methods (FTIR, BET, TGA, RAMAN, XRD and SEM) it was highlighted that the manufactured nano-structured graphene have adequate properties to become potential candidate for PEMFC electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Poomesh KK, Cho C (2015) Fuel Cells 15(1):196–203

    Article  Google Scholar 

  2. Li M, Scott K (2010) Electrochim Acta 55(6):2123–2128

    Article  CAS  Google Scholar 

  3. Mierlo JV, Maggetto G (2007) Fuel Cells 7(2):165–173

    Article  Google Scholar 

  4. Marinoiu A, Raceanu M, Cobzaru Teodorescu C, Marinescu D, Soare A, Varlam M (2014) Reac Kinet Mech Cat 112(1):37–50

    Article  CAS  Google Scholar 

  5. Sopian K, Daud WRW (2006) Renew Energ 31:719

    Article  CAS  Google Scholar 

  6. Yang JS, Cleemann LN, Steenberg T, Terkelsen C, Li QF, Jensen JO, Hjuler HA, Bjerrum NJ, He RH (2014) Fuel Cells 14:7–15

    Article  CAS  Google Scholar 

  7. Zhang J, Xie Z, Zhang J, Tang Y, Song C, Navessin T, Shi Z, Song D, Wang H, Wilkinson DP, Liu ZS, Holdcroft S (2006) J Power Sources 160(2):872–891

    Article  CAS  Google Scholar 

  8. Karthikeyan N, Vinayan BP, Rajesh M, Balaji K, Subramani AK, Ramaprabhu S (2015) Fuel Cells 15(2):278–287

    Article  CAS  Google Scholar 

  9. Çögenli MS, Mukerjee S, Bayrakçeken A (2015) Fuel Cells 15(2):288–297

    Article  Google Scholar 

  10. Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y (2008) ACS Nano 2(3):463–470

    Article  CAS  Google Scholar 

  11. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA (2006) Nature 442:282–286

    Article  CAS  Google Scholar 

  12. Eda G, Fanchini G, Chhowalla M (2008) Nat Nanotechnol 3:270–274

    Article  CAS  Google Scholar 

  13. Du Q, Zheng M, Zhang L, Wang Y, Chen J, Xue L, Dai W, Ji G, Cao J (2010) Electrochim Acta 55(12):3897–3903

    Article  CAS  Google Scholar 

  14. Bradley TH, Moftt BA, Mavris DN, Parekh DE (2007) J Power Sources 171(2):793–801

    Article  CAS  Google Scholar 

  15. Su K, Yao X, Sui S, Wei Z, Zhang J, Du S (2015) Fuel Cells 15(3):449–455

    Article  CAS  Google Scholar 

  16. Szabo T, Szeri A, Dekany I (2005) Carbon 43(1):87–94

    Article  CAS  Google Scholar 

  17. Kakaei K (2013) T, Zhiani M. J Power Sources 225:356–363

    Article  CAS  Google Scholar 

  18. Cho SH, Yang HN, Lee DC, Park SH, Kim WJ (2013) J Power Sources 225:200–206

    Article  CAS  Google Scholar 

  19. Iwashita N, Inagaki M (1990) Synthetic Met 34(1–3):139–144

    Google Scholar 

  20. Hong Y, Wang Z, Jin X (2013) Sci Reports 3:3439

    Google Scholar 

  21. Kovtyukhova NI, Wang Y, Berkdemir A, Cruz-Silva R, Terrones M, Crespi VH, Mallouk TE (2014) Nat Chem 6:957–963

    Article  CAS  Google Scholar 

  22. Inagaki M, Kouno E, Iwashita N (1990) Carbon 28(1):49–55

    Article  CAS  Google Scholar 

  23. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) ACS Nano 4(8):4806–4814

    Article  CAS  Google Scholar 

  24. Marinoiu A, Teodorescu C, Carcadea E, Raceanu M, Varlam M, Cobzaru C, Stefanescu I (2015) Mater Today 2:3797–3805

    Article  Google Scholar 

  25. Kim F, Luo J, Cruz-Silva R (2010) Adv Funct Mater 20(17):2867–2873

    Article  CAS  Google Scholar 

  26. Zhang TY, Zhang D (2011) Bull Mater Sci 34(1):25–28

    Article  Google Scholar 

  27. Ban FY, Majid SR, Huang NM, Lim HN (2012) Int J Electrochem Sci 7:4345–4351

    CAS  Google Scholar 

  28. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Chem Mater 11:771–778

    Article  CAS  Google Scholar 

  29. Gao W (2012) Ph.D. Thesis, Rice University, Graphite oxide: structure, reduction and applications

  30. Wang Y, Liu J, Liu L, Sun D (2011) Nanoscale Res Lett 6:241–248

    Article  Google Scholar 

  31. Ferrari AC et al (2006) Phys Rev Lett 97(187401):1–4

    Google Scholar 

  32. Zhang LL, Zhou R, Zhao XS (2010) J Mater Chem 20:5983–5992

    Article  CAS  Google Scholar 

  33. Wang S, Yu D, Dai L, Chang DW, Baek JB (2011) ACS Nano 5:6202–6209

    Article  CAS  Google Scholar 

  34. Jang JH, Rangappa D, Kwon YU, Honma I (2011) J Mater Chem 21:3462–3466

    Article  CAS  Google Scholar 

  35. He P, Bayachou M (2005) Layer-by-layer fabrication and characterization of DNA-wrapped single-walled carbon nanotube particles. Langmuir 21:6086–6092

    Article  CAS  Google Scholar 

  36. Rao AM, Eklund PC, Bandow S, Thess A, Smalley RE (1997) Nature 388:257–259

    Article  CAS  Google Scholar 

  37. Qi X, Pu KY, Zhou X, Li H, Liu B, Boey F, Huang W, Zhang H (2010) Small 6:663–669

    Article  CAS  Google Scholar 

  38. Hsiao MC, Liao SH, Yen MY, Liu PI, Pu NW, Wang CA, Ma CC (2010) ACS Appl Mater Interfaces 2:3092–3099

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been funded is supported by the National Agency of Scientific Research from Romania by the National Plan of R&D., “Nucleus” Program 2016-2017 and by the Romanian partnership in priority domains-PNII Programme, from MEN-UEFISCDI, under the Project No 284/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Marinoiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marinoiu, A., Raceanu, M., Carcadea, E. et al. Convenient graphene based materials as potential candidates for low cost fuel cell catalysts. Reac Kinet Mech Cat 118, 281–296 (2016). https://doi.org/10.1007/s11144-016-0999-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-016-0999-4

Keywords

Navigation