Skip to main content
Log in

Immobilization of crystallized photocatalysts on ceramic paper by titanium(IV) ethoxide and photocatalytic decomposition of phenol

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A simple method of persistent immobilization was developed for the fixing of highly efficient precrystallized (or even doped) titania (TiO2) based photocatalysts. TiO2 nanoparticles (Aeroxide P25 and VLP7000) were immobilized on the surface of Al2O3-based ceramic paper. For the immobilization, a titanium alkoxide (Ti(OEt)4) was applied as a fixing agent. This type of immobilization resulted in a photocatalytically active surface, which was used in fixed-bed flow reactors through the application of different forms of artificial or solar irradiation to activate the TiO2. To verify the stability, the decomposition of phenol was repeatedly measured on the same TiO2-covered ceramic paper; the photocatalytic performance proved to remain constant throughout five 2-h cycles. The potential for application on an industrial scale was demonstrated by a pilot-plant-scale flow reactor. The developed immobilization method is a simple technique that can be used to investigate the long-term efficiency of novel TiO2 samples, or can be applied in real air/water treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Černigoj U, Štangar UL, Trebše P (2007) Evaluation of a novel Carberry type photoreactor for the degradation of organic pollutants in water. J Photochem Photobiol A 188(2–3):169–176

    Article  Google Scholar 

  2. Kwon JM, Kim YH, Song BK, Yeom SH, Kim BS, Im JB (2006) Novel immobilization of titanium dioxide (TiO2) on the fluidizing carrier and its application to the degradation of azo-dye. J Hazard Mater 134(1–3):230–236

    Article  CAS  Google Scholar 

  3. Méndez-Arriaga F, Maldonado MI, Gimenez J, Esplugas S, Malato S (2009) Abatement of ibuprofen by solar photocatalysis process: enhancement and scale up. Catal Today 144(1–2):112–116

    Article  Google Scholar 

  4. Khataee AR, Fathinia M, Joo SW (2013) Simultaneous monitoring of photocatalysis of three pharmaceuticals by immobilized TiO2 nanoparticles: chemometric assessment, intermediates identification and ecotoxicological evaluation. Spectrochim Acta A 112:33–45

    Article  CAS  Google Scholar 

  5. Martínez C, Vilariño S, Fernández MI, Faria JLMC, Santaballa JA (2013) Mechanism of degradation of ketoprofen by heterogeneous photocatalysis in aqueous solution. Appl Catal B 142–143:633–646

    Article  Google Scholar 

  6. Giraldo AL, Peñuela GA, Torres-Palma RA, Pino NJ, Palominos RA, Mansilla HD (2010) Degradation of the antibiotic oxolinic acid by photocatalysis with TiO2 in suspension. Water Res 44(18):5158–5167

    Article  CAS  Google Scholar 

  7. Kominami H, Kumamoto H, Kera Y, Ohtani B (2001) Immobilization of highly active titanium(IV) oxide particles A novel strategy of preparation of transparent photocatalytic coatings. Appl Catal B 30:329–335

    Article  CAS  Google Scholar 

  8. Guillard C, Disdier J, Monnet C, Dussaud J, Malato S, Blanco J, Maldonado MI, Herrmann J-M (2003) Solar efficiency of a new deposited titania photocatalyst: chlorophenol, pesticide and dye removal applications. Appl Catal B 46(2):319–332

    Article  CAS  Google Scholar 

  9. Rao KVS, Rachel A, Subrahmanyam M, Boule P (2003) Immobilization of TiO2 on pumice stone for the photocatalytic degradation of dyes and dye industry pollutants. Appl Catal B 46(1):77–85

    Article  Google Scholar 

  10. Rao KVS, Subrahmanyam M, Boule P (2004) Immobilized TiO2 photocatalyst during long-term use: decrease of its activity. Appl Catal B 49(4):239–249

    Article  CAS  Google Scholar 

  11. Behnajady MA, Modirshahla N, Mirzamohammady M, Vahid B, Behnajady B (2008) Increasing photoactivity of titanium dioxide immobilized on glass plate with optimization of heat attachment method parameters. J Hazard Mater 160(2–3):508–513

    Article  CAS  Google Scholar 

  12. Hachem C, Bocquillon F, Zahra O, Bouchy M (2001) Decolourization of textile industry wastewater by the photocatalytic degradation process. Dyes Pigment 49:117–125

    Article  CAS  Google Scholar 

  13. Naskar S, Pillay SA, Chanda M (1998) Photocatalytic degradation of organic dyes in aqueous solution with TiO2 nanoparticles immobilized on foamed polyethylene sheet. J Photochem Photobiol A 113(3):257–264

    Article  CAS  Google Scholar 

  14. Fabiyi ME, Skelton RL (2000) Photocatalytic mineralisation of methylene blue using buoyant TiO2-coated polystyrene beads. J Photochem Photobiol A 132(1–2):121–128

    Article  CAS  Google Scholar 

  15. Zainal Z, Hui LK, Hussein MZ, Taufiq-Yap YH, Abdullah AH, Ramli I (2005) Removal of dyes using immobilized titanium dioxide illuminated by fluorescent lamps. J Hazard Mater 125(1–3):113–120

    Article  CAS  Google Scholar 

  16. Atheba P, Robert D, Trokourey A, Bamba D, Weber JV (2009) Design and study of a cost-effective solar photoreactor for pesticide removal from water. Water Sci Technol 60(8):2187–2193

    Article  CAS  Google Scholar 

  17. Fenoll J, Flores P, Hellín P, Martínez CM, Navarro S (2012) Photodegradation of eight miscellaneous pesticides in drinking water after treatment with semiconductor materials under sunlight at pilot plant scale. Chem Eng J 204–206:54–64

    Article  Google Scholar 

  18. Mahmoodi N, Arami M, Limaee N, Gharanjig K, Nourmohammadian F (2007) Nanophotocatalysis using immobilized titanium dioxide nanoparticle degradation and mineralization of water containing organic pollutant: case study of Butachlor. Mater Res Bull 42(5):797–806

    Article  CAS  Google Scholar 

  19. Rachel A, Lavedrine B, Subrahmanyam M, Boule P (2002) Use of porous lavas as supports of photocatalysts. Catal Commun 3:165–171

    Article  CAS  Google Scholar 

  20. Gumy D, Rincon A, Hajdu R, Pulgarin C (2006) Solar photocatalysis for detoxification and disinfection of water: different types of suspended and fixed TiO2 catalysts study. Sol Energy 80(10):1376–1381

    Article  CAS  Google Scholar 

  21. Antoniou MG, Dionysiou DD (2007) Application of immobilized titanium dioxide photocatalysts for the degradation of creatinine and phenol, model organic contaminants found in NASA’s spacecrafts wastewater streams. Catal Today 124(3–4):215–223

    Article  CAS  Google Scholar 

  22. Shan AY, Ghazi TIM, Rashid SA (2010) Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: a review. Appl Catal A 389(1–2):1–8

    Article  CAS  Google Scholar 

  23. Pozzo RL, Baltanfis MA, Cassano AE (1997) Supported titanium oxide as photocatalyst in water decontamination: state of the art. Catal Today 39:219–231

    Article  CAS  Google Scholar 

  24. Shepharda GS, Stockenström Sonja, de Villiers David, Engelbrecht WJ, Wessels GFS (2002) Degradation of microcystin toxins in a falling film photocatalytic reactor with immobilized titanium dioxide catalyst. Water Res 36:140–146

    Article  Google Scholar 

  25. Singh S, Mahalingam H, Singh PK (2013) Polymer-supported titanium dioxide photocatalysts for environmental remediation: a review. Appl Catal A 462–463:178–195

    Article  Google Scholar 

  26. Hosseini SN, Borghei SM, Vossoughi M, Taghavinia N (2007) Immobilization of TiO2 on perlite granules for photocatalytic degradation of phenol. Appl Catal B 74(1–2):53–62

    Article  CAS  Google Scholar 

  27. Scotti R, D’Arienzo M, Morazzoni F, Bellobono IR (2009) Immobilization of hydrothermally produced TiO2 with different phase composition for photocatalytic degradation of phenol. Appl Catal B 88(3–4):323–330

    Article  CAS  Google Scholar 

  28. Lee J-M, Kim M-S, Kim B-W (2004) Photodegradation of bisphenol-A with TiO2 immobilized on the glass tubes including the UV light lamps. Water Res 38(16):3605–3613

    Article  CAS  Google Scholar 

  29. Alrousan DMA, Polo-López MI, Dunlop PSM, Fernández-Ibáñez P, Byrne JA (2012) Solar photocatalytic disinfection of water with immobilised titanium dioxide in re-circulating flow CPC reactors. Appl Catal B 128:126–134

    Article  CAS  Google Scholar 

  30. Noorjahan M (2004) A novel and efficient photocatalyst: TiO2-HZSM-5 combinate thin film. Appl Catal B 47(3):209–213

    Article  CAS  Google Scholar 

  31. Tennakone K, Tilakaratne CTK, Kottegoda IRM (1995) Photocatalytic degradation of organic contaminants in water with TiO2 supported on polythene films. J Photochem Photobiol A 87:177–179

    Article  CAS  Google Scholar 

  32. Brezova V, Jankovicova M, Soldan M, Blazkova A, Rehakova M, Surina I, Ceppan M, Havlinova B (1994) Photocatalytic degradation of p-toluenesulphonic acid in aqueous systems containing powdered an immobilized titanium-dioxide. J Photochem Photobiol A 83(1):69–75

    Article  CAS  Google Scholar 

  33. Cho SM, Choi WY (2001) Solid-phase photocatalytic degradation of PVC-TiO2 polymer composites. J Photochem Photobiol A 143(2–3):221–228

    Article  CAS  Google Scholar 

  34. Dunlop PSM, McMurray TA, Hamilton JWJ, Byrne JA (2008) Photocatalytic inactivation of Clostridium perfringens spores on TiO2 electrodes. J Photochem Photobiol A 196(1):113–119

    Article  CAS  Google Scholar 

  35. Gelover S, Mondragón P, Jiménez A (2004) Titanium dioxide sol–gel deposited over glass and its application as a photocatalyst for water decontamination. J Photochem Photobiol A 165(1–3):241–246

    Article  CAS  Google Scholar 

  36. López-Muñoz M-J, Rv Grieken, Aguado J, Marugán J (2005) Role of the support on the activity of silica-supported TiO2 photocatalysts: structure of the TiO2/SBA-15 photocatalysts. Catal Today 101(3–4):307–314

    Article  Google Scholar 

  37. Veréb G, Manczinger L, Bozsó G, Sienkiewicz A, Forró L, Mogyorósi K, Hernádi K, Dombi A (2013) Comparison of the photocatalytic efficiencies of bare and doped rutile and anatase TiO2 photocatalysts under visible light for phenol degradation and E. coli inactivation. Appl Catal B 129:566–574

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP 4.2.4. A/2-11-1-2012-0001 ‘National Excellence Program’. This work was partially co-financed by the Swiss Contribution (SH/7/2/20). The authors are indebted to Evonik Industries and to Kronos Titan Gmbh. for supporting our work by supplying TiO2 for these studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Veréb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veréb, G., Ambrus, Z., Pap, Z. et al. Immobilization of crystallized photocatalysts on ceramic paper by titanium(IV) ethoxide and photocatalytic decomposition of phenol. Reac Kinet Mech Cat 113, 293–303 (2014). https://doi.org/10.1007/s11144-014-0734-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-014-0734-y

Keywords

Navigation