Skip to main content
Log in

Characterization and hydrodeoxygenation properties of Co promoted Ni–Mo–B amorphous catalysts: influence of Co content

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Different contents of promoter (Co) in Co–Ni–Mo–B amorphous catalysts were prepared by chemical reduction of the precursors of metal salts with a sodium borohydride aqueous solution. The catalysts were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Adding a proper content of the promoter Co into Ni–Mo–B amorphous catalyst could increase the MoO2 content and decrease the particle size, but doping excess Co would cover some of the active sites and increase the particle size of the catalysts. The effect of Co content on the catalytic hydrodeoxygenation activity of the amorphous catalysts was studied using phenol as a model compound. The main route for the HDO of phenol on these amorphous catalysts was hydrogenation–dehydration and the content of aromatic compounds in HDO products was decreased obviously. The pseudo first-order reaction rate constant of the phenol HDO on Co–Ni–Mo–B amorphous catalyst was much greater than that of MoS2 when adding proper promoter Co.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. http://www.biocoup.com/index.php?id=42

  2. Edward F (2000) Appl Catal A 199:147–190

    Article  Google Scholar 

  3. Yang YQ, Luo HA, Tong GH, Smith KJ, Thian TC (2008) Chin J Chem Eng 16:733–739

    Article  CAS  Google Scholar 

  4. Yang YQ, Thian TC, Smith KJ (2008) Catal Commun 9:1364–1368

    Article  CAS  Google Scholar 

  5. Kallury RKMR, Restivo WM, Tidwell TT (1985) J Catal 96:535–543

    Article  CAS  Google Scholar 

  6. Bunch AY, Ozkan US (2002) J Catal 206:177–187

    Article  CAS  Google Scholar 

  7. Şenol Oİ, Viljava TR, Krause AOI (2005) Catal Today 106:186–189

    Article  CAS  Google Scholar 

  8. Şenol Oİ, Viljava TR, Krause AOI (2007) Appl Catal A 326:236–244

    Article  CAS  Google Scholar 

  9. Bunch AY, Wang XQ, Ozkan US (2007) J Mol Catal A 270:264–272

    Article  CAS  Google Scholar 

  10. Ryymin EM, Honkela ML, Viljava TR, Krause AOI (2009) Appl Catal A 358:42–48

    Article  CAS  Google Scholar 

  11. Centeno A, Laurent E, Delmon B (1995) J Catal 154:288–298

    Article  CAS  Google Scholar 

  12. Kirby SR, Song CS, Schobert HH (1996) Catal Today 31:121–135

    Article  CAS  Google Scholar 

  13. Ferrari M, Bosmans S, Maggi R, Delmon B, Grange P (1999) Stud Surf Sci Catal 127:85–95

    Article  CAS  Google Scholar 

  14. Viljava TR, Komulainen RS, Krause AOI (2000) Catal Today 60:83–92

    Article  CAS  Google Scholar 

  15. Ferrari M, Bosmans S, Maggi R, Delmon B, Grange P (2001) Catal Today 65:257–264

    Article  CAS  Google Scholar 

  16. Şenol Oİ, Viljava TR, Krause AOI (2005) Catal Today 100:331–335

    Article  CAS  Google Scholar 

  17. Massoth FE, Politzer P, Concha MC, Murray JS, Jakowski J, Simons J (2006) J Phys Chem B 110:14283–14291

    Article  CAS  Google Scholar 

  18. Şenol Oİ, Ryymin EM, Viljava TR, Krause AOI (2007) J Mol Catal A 277:107–112

    Article  CAS  Google Scholar 

  19. Wang XQ, Li GL, Ozkan US (2004) J Mol Catal A 217:219–229

    Article  CAS  Google Scholar 

  20. Yoshimura Y, Sato T, Shimada H, Matsubayashi N, Nishijima A (1991) Appl Catal 73:55–63

    Article  CAS  Google Scholar 

  21. Lanurent E, Delmon B (1994) Stud Surf Sci Catal 88:459–466

    Article  Google Scholar 

  22. Bunch AY, Wang XQ, Ozkan US (2008) Appl Catal A 346:96–103

    Article  CAS  Google Scholar 

  23. Gandarias I, Barrio VL, Requies J, Arias PL, Cambra JF, Güemez MB (2008) Int J Hydrog Energy 33:3485–3488

    Article  CAS  Google Scholar 

  24. Smith GV, Brower WE, Matyjaszczyk MS (1980) Amorphous alloy catalysts. In: Proceedings of the 7th International Congress on Catalysis. Elsevier, Tokyo, pp 355–357

  25. Li HX, Li H, Wang MH (2001) Appl Catal A 207:129–137

    Article  CAS  Google Scholar 

  26. Li H, Xu Y, Yang HX, Zhang F, Li HX (2009) J Mol Catal A 307:105–114

    Article  CAS  Google Scholar 

  27. Li H, Wu Y, Luo H, Wang M, Xu Y (2003) J Catal 214(1):15–25

    Article  CAS  Google Scholar 

  28. Chen XY, Wang S, Zhuang JH, Qiao MH, Fan KN, He HY (2004) J Catal 227:419–427

    Article  CAS  Google Scholar 

  29. Hou YJ, Wang YQ, Mi WL, Li ZH, Han S, Mi ZT, Wub W, Minb E (2003) React Kinet Catal Lett 80:233–239

    Article  CAS  Google Scholar 

  30. Liu YC, Chen YW (2006) Ind Eng Chem Res 45:2973–2980

    Article  CAS  Google Scholar 

  31. Pei Y, Guo PJ, Qiao MH, Li HX, Wei SQ, He HY, Fan KN (2007) J Catal 248:303–310

    Article  CAS  Google Scholar 

  32. Shen JH, Chen YW (2007) J Mol Catal A 273:265–276

    Article  CAS  Google Scholar 

  33. Kukula P, Gabova V, Koprivova K, Trtik P (2007) Catal Today 121:27–38

    Article  CAS  Google Scholar 

  34. Tong DG, Chu W, Luo YY, Ji XY, He Y (2007) J Mol Catal A 265:195–204

    Article  CAS  Google Scholar 

  35. Li H, Zhang J, Li HX (2007) Catal Commun 8:2212–2216

    Article  CAS  Google Scholar 

  36. Li H, Yang HX, Li HX (2007) J Catal 25:233–238

    Article  CAS  Google Scholar 

  37. Jia RL, Ma ZL, Wang CY, Wang SM (2005) React Kinet Catal Lett 85:73–78

    Article  CAS  Google Scholar 

  38. Wang WY, Yang YQ, Bao JG, Luo HA (2010) Catal Commun 11:803–807

    Article  CAS  Google Scholar 

  39. Suslick KS, Choe SB, Cichowlas AA, Grinstaff MW (1991) Nature 353:414–416

    Article  CAS  Google Scholar 

  40. Song LM, Li W, Wang GL, Zhang MH, Tao KY (2007) Catal Today 125:137–142

    Article  CAS  Google Scholar 

  41. Parks GL, Pease ML, Burns AW, Layman KA, Bussell E, Wang XQ, Hanson J, Rodriguez JA (2007) J Catal 246:277–292

    Article  CAS  Google Scholar 

  42. Belatel H, Kandari HA, Khorafi FA, Katrib A, Garin F (2004) Appl Catal A 275:141–147

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Foundation of Science and Technology Innovative Researcher Team in Higher Education Institutional of Hunan Province (STIRT, No. 200803001), the Foundation of Hunan Provincial Key Laboratory of Green Catalysis and Chemical Reaction Engineering (GC&CRE, No. 2009010) and Hunan Provincial Innovation Foundation for Postgraduate (CX2009B135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunquan Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Yang, Y., Luo, H. et al. Characterization and hydrodeoxygenation properties of Co promoted Ni–Mo–B amorphous catalysts: influence of Co content. Reac Kinet Mech Cat 101, 105–115 (2010). https://doi.org/10.1007/s11144-010-0201-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-010-0201-3

Keywords

Navigation