Skip to main content
Log in

The short envelope soliton dynamics in inhomogeneous dispersive media with allowance for stimulated scattering by damped low-frequency waves

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We consider the soliton dynamics in terms of the extended nonlinear Schrödinger equation taking into account the inhomogeneous linear second-order dispersion (SOD) and stimulated scattering by damped low-frequency waves (SSDW). It is shown that the wave number downshift due to SSDW is compensated by an upshift due to the SOD decrease on the spatial coordinate. A new class of stationary nonlinear localized solutions (solitons) arising as an equilibrium of SSDW and decreasing spatial SOD is found analytically within the framework of the extended inhomogeneous nonlinear Schrödinger equation. A regime of the dynamic equilibrium of SSDW and inhomogeneous dispersive medium with the soliton parameters periodically varied in time is found. Analytical and numerical results are in good agreement for this regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. P. Agrawal, Nonlinear Fiber Optics, Academic Press, San Diego (2001).

    Google Scholar 

  2. Y. Yang, Solitons in Field Theory and Nonlinear Analysis, Springer, New York (2001).

    Book  MATH  Google Scholar 

  3. Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, Academic Press, Amsterdam (2003).

    Google Scholar 

  4. L. A. Dickey, Soliton Equation and Hamiltonian Systems, World Scientific, New York (2005).

    Google Scholar 

  5. V. E. Zakharov and A. B. Shabat, Sov. Phys. JETP, 34, 62 (1972).

    MathSciNet  ADS  Google Scholar 

  6. A. Hasegava and F. Tappert, Appl. Phys. Lett ., 23, 142 (1973).

    Article  ADS  Google Scholar 

  7. J. R. Oliviera and M. A. Moura, Phys. Rev. E, 57, 4751 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  8. F. M. Mitschke and L. F. Mollenauer, Opt. Lett., 11, 659 (1986).

    Article  ADS  Google Scholar 

  9. J. P. Gordon, Opt. Lett., 11, 662 (1986).

    Article  ADS  Google Scholar 

  10. Y. J. Kodama, Stat. Phys., 39, 597 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  11. Y. Kodama and A. Hasegava, IEEE J. Quantum Electron., 23, 510 (1987).

    Article  ADS  Google Scholar 

  12. C. E. Zaspel, Phys. Rev. Lett., 82, 723 (1999).

    Article  ADS  Google Scholar 

  13. B. Hong and D. Lu, Int. J. Nonlin. Sci., 7, 360 (2009).

    MathSciNet  MATH  Google Scholar 

  14. V. I. Karpman, Eur. Phys. J. B., 39, 341 (2004).

    Article  ADS  Google Scholar 

  15. E. M. Gromov and V. I. Talanov, J. Exp. Theor. Phys., 81, 73 (1996).

    ADS  Google Scholar 

  16. E. M. Gromov and V. I. Talanov, Radiophys. Quantum Electron., 39, 436 (1996).

    MathSciNet  ADS  Google Scholar 

  17. E. M. Gromov and V. I. Talanov, Chaos, 10, 551 (2000).

    Article  ADS  Google Scholar 

  18. E. M. Gromov, L. V. Piskunova, and V. V. Tyutin, Phys. Lett. A, 256, 153 (1999).

    Article  ADS  Google Scholar 

  19. M. A. Obregon and Yu. A. Stepanyants, Phys. Lett. A, 249, 315 (1998).

    Article  ADS  Google Scholar 

  20. M. Scalora, M. Syrchin, N. Akozbek, et al., Phys. Rev. Lett., 95, Art. No. 013902 (2005).

  21. S. C. Wen Y. Wang, W. Su, et al., Phys. Rev. E, 73, Art. No. 036617 (2006).

  22. M. Marklund, P. K. Shukla, and L. Stenflo, Phys. Rev. E, 73, Art. No. 037601 (2006).

  23. N. L. Tsitsas, N. Rompotis, I. Kourakis, et al., Phys. Rev. E, 79, Art. No. 037601 (2009).

  24. Y. S. Kivshar, Phys. Rev. A, 42, 1757 (1990).

    Article  ADS  Google Scholar 

  25. Y. S. Kivshar and B. A. Malomed, Opt. Lett., 18, 485 (1993).

    Article  ADS  Google Scholar 

  26. S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses, Amer. Inst. Phys., New York (1992). (1998).

  27. B. A. Malomed and R. S.Tasgal, J. Opt. Soc. Amer. B, 15, 162 (1998).

    Article  ADS  Google Scholar 

  28. F. Biancalama, D. V. Skrybin, and A. V. Yulin, Phys. Rev. E, 70, Art. No. 011615 (2004).

  29. R.-J. Essiambre and G. P. Agrawal, J. Opt. Soc. Amer. B, 14, 314 (1997).

    Article  ADS  Google Scholar 

  30. R.-J. Essiambre and G. P. Agrawal, J. Opt. Soc. Amer. B, 14, 323 (1997).

    Article  ADS  Google Scholar 

  31. A. Andrianov, S. Muraviev, A. Kim, and A. Sysoliatin, Laser Phys., 17, 1296 (2007).

    Article  ADS  Google Scholar 

  32. S. Chernikov, E. Dianov, D. Richardson, and D. Payne, Opt. Lett., 18, 476 (1993).

    Article  ADS  Google Scholar 

  33. V. E. Zakharov, Sov. Phys. JETP, 35, No. 5, 908 (1972).

    ADS  Google Scholar 

  34. V. E. Zakharov, Sov. Phys. JETP, 33, No. 5, 927 (1971).

    ADS  Google Scholar 

  35. V. E. Zakharov, Radiophys. Quantum Electron., 17, No. 4, 326 (1974).

    Article  ADS  Google Scholar 

  36. R. Blit and B. A. Malomed, Phys. Rev. A, 86, Art. No. 043841 (2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Aseeva.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 56, Nos. 3, pp. 173–183, March 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aseeva, N.V., Gromov, E.M. & Tyutin, V.V. The short envelope soliton dynamics in inhomogeneous dispersive media with allowance for stimulated scattering by damped low-frequency waves. Radiophys Quantum El 56, 157–166 (2013). https://doi.org/10.1007/s11141-013-9423-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-013-9423-3

Keywords

Navigation