Skip to main content
Log in

Phytochemical Compounds and Antioxidant Activity Modified by Germination and Hydrolysis in Mexican Amaranth

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Amaranth (Amaranthus spp.) grains have become essential for human health and nutrition; due to the presence of bioactive compounds that have shown some biological activities. This study aimed to evaluate the effect of germination, enzymatic hydrolysis, and its combination on the phytochemical compounds and antioxidant activity in Mexican amaranth. Germinated amaranth flours (GAF) exhibited increases in the concentrations of soluble protein (SP), total phenolic content (TPC), total flavonoid content (TFC), total anthocyanin content (TAC) and antioxidant activity (AOX) by 35.7, 17.2, 163.0, 1472.2, and 54.3%, respectively, compared with ungerminated amaranth flours (UAF). In SDS-PAGE, both hydrolysates of UAF and GAF exhibited low molecular weight bands (< 10 kDa). The hydrolysates of UAFH and GAFH had the highest degree of hydrolysis at 205 min of sequential hydrolysis (pepsin with pancreatin) time with 73.4 and 60.3%, respectively. Both hydrolysates obtained from GAF and UAF released significantly SP, TPC, TFC after sequential enzymatic hydrolysis (up 205 min), which led to a remarkable improvement of AOX when compared to nonhydrolyzed amaranth samples. The UAFH and GAFH had the best AOX at 270 min of enzymatic hydrolysis with 983.1 and 1304.9 μmol TE/mg SP, respectively. Hence, the combination of germination and enzymatic hydrolysis could be used to produce functional ingredients for food product development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

GAF:

Germinated amaranth flour

UAF:

Non-germinated amaranth flour

GAFH :

Germinated amaranth flour hydrolysate

UAFH:

Non-germinated amaranth flour hydrolysate

DH:

Degree of hydrolysis

AOX :

Antioxidant activity

References

  1. Montoya-Rodríguez A, Milán-Carrillo J, Dia VP, Reyes-Moreno C, González de Mejía E (2014) Pepsin-pancreatin protein hydrolysates from extruded amaranth inhibit markers of atherosclerosis in LPS-induced THP-1 macrophages-like human cells by reducing expression of proteins in LOX-1 signaling pathway. Proteome Sci 12:30. https://doi.org/10.1186/1477-5956-12-30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tang Y, Tsao R (2017) Phytochemicals in quinoa and amaranth grains and their antioxidant, anti-inflammatory, and potential health beneficial effects: a review. Mol Nutr Food Res 61:7. https://doi.org/10.1002/mnfr.201600767

    Article  CAS  Google Scholar 

  3. Montoya-Rodríguez A, Gómez-Favela MA, Reyes-Moreno C et al (2015) Identification of bioactive peptide sequences from amaranth (Amaranthus hypochondriacus) seed proteins and their potential role in the prevention of chronic diseases. Compr Rev Food Science F 14:139–158. https://doi.org/10.1111/1541-4337.12125

    Article  CAS  Google Scholar 

  4. Orsini Delgado M, Galleano M, Añón M, Tironi V (2015) Amaranth peptides from gastrointestinal digestion: antioxidant activity against physiological reactive species. Plant Foods Hum Nutr 70:27–34. https://doi.org/10.1007/s11130-014-0457-2

    Article  CAS  Google Scholar 

  5. Milán-Carrillo J, Montoya-Rodríguez A, Reyes-Moreno C (2012) High-antioxidant capacity beverages based on extruded and roasted amaranth (Amaranthus hypochondriacus) flour. In: Tunick MH, González de Mejía E (eds) Hispanic foods: chemistry and bioactive compounds, vol 1109, 1st edn. American Chemical Society, Washington, D.C., pp 199–216. https://doi.org/10.1021/bk-2012-1109.ch013

    Chapter  Google Scholar 

  6. Perales-Sánchez JXK, Reyes-Moreno C, Gómez-Favela MA, Milán-Carrillo J, Cuevas-Rodríguez EO, Valdez-Ortiz A, Gutiérrez-Dorado R (2014) Increasing the antioxidant activity, total phenolic and flavonoid contents by optimizing the germination conditions of Amaranth seeds. Plant Foods Hum Nutr 69:196–202. https://doi.org/10.1007/s11130-014-0430-0

    Article  CAS  PubMed  Google Scholar 

  7. Montoya-Rodríguez A, González de Mejía EG, Dia VP et al (2014) Extrusion improved the anti-inflammatory effect of amaranth (Amaranthus hypochondriacus) hydrolysates in LPS-induced human THP-1 macrophage-like and mouse RAW 264.7 macrophages by preventing activation of NF-κB signaling. Mol Nutr Food Res 58:1028–1041. https://doi.org/10.1002/mnfr.201300764

    Article  CAS  PubMed  Google Scholar 

  8. Orsini Delgado MC, Tironi VA, Añón MC (2011) Antioxidant activity of amaranth protein or their hydrolysates under simulated gastrointestinal digestion. LWT-Food Sci Technol 44:1752–1760. https://doi.org/10.1007/s11130-014-0457-2

    Article  CAS  Google Scholar 

  9. López-Barrios L, Antunes-Ricardo M, Gutiérrez-Uribe JA (2016) Changes in antioxidant and antiinflammatory activity of black bean (Phaseolus vulgaris L.) protein isolates due to germination and enzymatic digestion. Food Chem 203:417–424. https://doi.org/10.1016/j.foodchem.2016.02.048

    Article  CAS  PubMed  Google Scholar 

  10. Nielsen PM, Petersen D, Dambmann C (2001) Improved method for determining food protein degree of hydrolysis. J Food Sci 66:642–646. https://doi.org/10.1111/j.1365-2621.2001.tb04614.x

    Article  CAS  Google Scholar 

  11. Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol 299:152–178. https://doi.org/10.1016/S0076-6879(99)99017-1

    Article  CAS  Google Scholar 

  12. Heimler D, Vignolini P, Dini MG, Romani A (2005) Rapid tests to assess the antioxidant activity of Phaseolus vulgaris L. dry beans. J Agric Food Chem 53:3053–3056. https://doi.org/10.1021/jf049001r

    Article  CAS  PubMed  Google Scholar 

  13. Abdel-Aal ESM, Hucl P (1999) A rapid method for quantifying total anthocyanins in blue aleurone and purple pericarp wheats. Cereal Chem 76:350–354. https://doi.org/10.1094/CCHEM.1999.76.3.350

    Article  CAS  Google Scholar 

  14. Broadhurst RB, Jones WT (1978) Analysis of condensed tannins using acidified vanillin. J Sci Food Agric 29:788–794. https://doi.org/10.1002/jsfa.2740290908

    Article  CAS  Google Scholar 

  15. Ou B, Hampsch-Woodill M, Prior RL (2001) Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J Agric Food Chem 49:4619–4626. https://doi.org/10.1021/jf010586o

    Article  CAS  PubMed  Google Scholar 

  16. Vernaza MG, Dia VP, Gonzalez de Mejia E et al (2012) Antioxidant and antiinflammatory properties of germinated and hydrolysed Brazilian soybean flours. Food Chem 134:2217–2225. https://doi.org/10.1016/j.foodchem.2012.04.037

    Article  CAS  PubMed  Google Scholar 

  17. De Souza RT, Hernandez LMR, Chang YK et al (2014) Impact of germination and enzymatic hydrolysis of cowpea bean (Vigna unguiculata) on the generation of peptides capable of inhibiting dipeptidyl peptidase IV. Food Res Int 64:799–809. https://doi.org/10.1016/j.foodres.2014.08.016

    Article  CAS  Google Scholar 

  18. Zhang G, Xu Z, Gao Y, Huang X, Zou Y, Yang T (2015) Effects of germination on the nutritional properties, phenolic profiles, and antioxidant activities of buckwheat. J Food Sci 80:H1111–HH1119. https://doi.org/10.1111/1750-3841.12830

  19. Guardado-Félix D, Serna-Saldivar SO, Cuevas-Rodríguez EO, Jacobo-Velázquez DA, Gutiérrez-Uribe JA (2017) Effect of sodium selenite on isoflavonoid contents and antioxidant capacity of chickpea (Cicer arietinum L.) sprouts. Food Chem 226:69–74. https://doi.org/10.1016/j.foodchem.2017.01.046

    Article  CAS  PubMed  Google Scholar 

  20. Olawoye BT, Gbadamosi SO (2017) Effect of different treatments on in vitro protein digestibility, antinutrients, antioxidant properties and mineral composition of Amaranthus viridis seed. Cogent Food Agric 3:1296402. https://doi.org/10.1080/23311932.2017.1296402

  21. Kumari S, Krishnan V, Sachdev A (2015) Impact of soaking and germination durations on antioxidants and anti-nutrients of black and yellow soybean (Glycine max L.) varieties. J Plant Biochem Biotechnol 24:355–358. https://doi.org/10.1007/s13562-014-0282-6

  22. Acosta-Estrada BA, Gutiérrez-Uribe JA, Serna-Saldívar SO (2014) Bound phenolics in foods, a review. Food Chem 152:46–55. https://doi.org/10.1016/j.foodchem.2013.11.093

    Article  CAS  PubMed  Google Scholar 

  23. Tironi VA, Añón MC (2010) Amaranth proteins as a source of antioxidant peptides: effect of proteolysis. Food Res Int 43:315–322. https://doi.org/10.1016/j.foodres.2009.10.001

    Article  CAS  Google Scholar 

  24. Silva-Sánchez C, Barba de la Rosa APB, León-Galván MF, De Lumen BO, De León-Rodríguez A, De Mejía-González E (2008) Bioactive peptides in Amaranth (Amaranthus hypochondriacus) seed. J Agric Food Chem 56:1233–1240. https://doi.org/10.1021/jf072911z

    Article  CAS  PubMed  Google Scholar 

  25. Aphalo P, Martínez EN, Añón MC (2015) Amaranth sprouts: a potential health promoting and nutritive natural food. Int J Food Prop 18:2688–2698. https://doi.org/10.1080/10942912.2015.1004585

    Article  CAS  Google Scholar 

  26. Jamdar SN, Rajalakshmi V, Pednekar MD, Juan F, Yardi V, Sharma A (2010) Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate. Food Chem 121:178–184. https://doi.org/10.1016/j.foodchem.2009.12.027

    Article  CAS  Google Scholar 

  27. Pazinatto C, Malta LG, Pastore GM et al (2013) Antioxidant capacity of amaranth products: effects of thermal and enzymatic treatments. Food Sci Technol 33:485–493. https://doi.org/10.1590/S0101-20612013005000076

    Article  Google Scholar 

  28. Pellegrini M, Lucas-Gonzalez R, Fernandez-Lopez J et al (2017) Bioaccessibility of polyphenolic of six quinoa seeds during in vitro gastrointestinal digestion. J Funct Foods 38:77–88. https://doi.org/10.1016/j.jff.2017.08.042

  29. Soriano Sancho RA, Pavan V, Pastore GM (2015) Effect of in vitro digestion on bioactive compounds and antioxidant activity of common bean seed coats. Food Res Int 76:74–78. https://doi.org/10.1016/j.foodres.2014.11.042

    Article  CAS  Google Scholar 

  30. Guan H, Diao X, Jiang F, Han J, Kong B (2018) The enzymatic hydrolysis of soy protein isolate by Corolase PP under high hydrostatic pressure and its effect on bioactivity and characteristics of hydrolysates. Food Chem 245:89–96. https://doi.org/10.1016/j.foodchem.2017.08.081

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Milán-Carrillo.

Ethics declarations

Conflict of Interest

There are no conflicts of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandoval-Sicairos, E.S., Domínguez-Rodríguez, M., Montoya-Rodríguez, A. et al. Phytochemical Compounds and Antioxidant Activity Modified by Germination and Hydrolysis in Mexican Amaranth. Plant Foods Hum Nutr 75, 192–199 (2020). https://doi.org/10.1007/s11130-020-00798-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-020-00798-z

Keywords

Navigation