Skip to main content
Log in

Rheological Flow Behavior of Structural Polysaccharides from Edible Tender Cladodes of Wild, Semidomesticated and Cultivated ‘Nopal’ (Opuntia) of Mexican Highlands

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

The aim of this study was to quantify the content of polysaccharides of edible tender cladodes (nopalitos) of three species of Opuntia and to evaluate the rheological flow behavior of isolated polysaccharides. A completely randomized experimental design was used to characterize a wild (O. streptacantha), a semidomesticated (O. megacantha) and a domesticated (O. ficus-indica) species. Mucilage content was higher (4.93 to 12.43 g 100 g−1 dry matter), tightly bound hemicelluloses were lower (3.32 to 1.81 g 100 g−1 dry matter) and pectins and loosely bound hemicelluloses were not different in wild than in domesticated species. Aqueous solution/suspensions of mucilage, pectins, hemicellulose and cellulose of all species showed non-Newtonian behavior under simple shear flow. The flow behavior of the structural polysaccharides was well described by the Ostwald de-Waele model. Pectins and mucilages exhibited the highest consistency indexes (K values ranged from 0.075 to 0.177 Pasn) with a moderated shear-thinning behavior (n values ranged from 0.53 to 0.67). Cellulose dispersions exhibited the most shear-thinning behavior (n values ranged from 0.17 to 0.41) and hemicelluloses showed a tendency to Newtonian flow (n values ranged from 0.82 to 0.97). The rheological flow properties of these polysaccharides may be useful to improve the textural and sensory qualities of some foods and pharmaceutical materials. Moreover, they can emerge as functional ingredients mainly due to the nutraceutical properties that have been attributed to nopalitos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Reyes-Agüero JA, Aguirre-Rivera JR, Flores-Flores JL (2005) Variación morfológica de Opuntia (Cactaceae) en relación con su domesticación en la altiplanicie meridional de México. Interciencia 30:476–484. (In Spanish)

  2. Peña-Valdivia CB, Trejo C, Arroyo-Peña VB, Sánchez-Urdaneta AB, Balois-Morales R (2012) Diversity of unavailable polysaccharides and dietary fiber in domesticated nopalito and cactus pear fruit (Opuntia spp.). Chem Biodivers 9:1599–1610

    Article  Google Scholar 

  3. López-Palacios C, Peña-Valdivia CB, Reyes-Agüero JA, Rodríguez-Hernández AI (2012) Effects of domestication on structural polysaccharides and dietary fiber in nopalitos (Opuntia spp.). Genet Resour Crop Evol 59:1015–1026

    Article  Google Scholar 

  4. Casas A, Caballero J, Valiente BA, Soriano A, Dávila P (1999) Morphological variation and the process of domestication of Stenocereus stellatus (Cactaceae) in Central Mexico. Am J Bot 86:522–533

    Article  CAS  Google Scholar 

  5. Loveys BR, Stoll M, Davies WJ (2004) Physiological approaches to enhance water use efficiency in agriculture: exploiting plant signaling. In: Bacon MA (ed) Novel irrigation practice in water use efficiency in plant biology. Blackwell, London, pp 113–141

    Google Scholar 

  6. Fuller S, Beck E, Salman H, Tapsell L (2016) New horizons for the study of dietary fiber and health: a review. Plant Foods Hum Nutr 71:1–12

    Article  CAS  Google Scholar 

  7. Ammar I, Ennouri M, Bouaziz M, Amira AB, Attia H (2015) Phenolic profiles, phytochemicals and mineral content of decoction and infusion of Opuntia ficus-indica flowers. Plant Foods Hum Nutr 70:388–394

  8. Angulo-Bejarano PI, Martínez-Cruz O, Paredes-López O (2014) Phytochemical content, nutraceutical potential and biotechnological applications of an ancient Mexican plant: nopal (Opuntia ficus-indica). Curr Nutr Food Sci 10:196–217

  9. Nuñez-Lopez MA, Paredes-Lopez O, Reynoso-Camacho R (2013) Functional and hypoglycemic properties of nopal cladodes (O. ficus-indica) at different maturity stages using in vitro and in vivo tests. J Agric Food Chem 61:10981–10986

  10. Bensadón S, Hervert-Hernandez D, Sayago-Ayerdi SG, Goñi I (2010) By-products of Opuntia ficus-indica as a source of antioxidant dietary fiber. Plant Foods Hum Nutr 65:210–216

  11. Calvo-Arriaga AO, Hernández-Montes A, Peña-Valdivia CB, Corrales-García J, Aguirre-Mandujano E (2010) Preference mapping and rheological properties of four nopal (Opuntia spp.) cultivars. J Prof Assoc Cactus Dev 12:127–142

    Google Scholar 

  12. León-Martínez FM, Rodríguez-Ramírez J, Medina-Torres LL, Méndez-Lagunas LL, Bernard-Bernard MJ (2011) Effects of drying conditions on the rheological properties of reconstituted mucilage solutions (Opuntia ficus-indica). Carbohydr Polym 84:439–445

    Article  Google Scholar 

  13. Cárdenas A, Goycoolea FM, Rinaudo M (2008) On the gelling behavior of ‘nopal’ (Opuntia ficus-indica) low methoxil pectin. Carbohydr Polym 73:212–222

    Article  Google Scholar 

  14. Majdoub H, Roudesli S, Picton L, Le-Cerf D, Muller G, Grisel M (2001) Prickly pear nopals pectin from Opuntia ficus-indica physico-chemical study and semi-dilute solutions. Carbohydr Polym 46:69–79

  15. García E (2004) Modificaciones al sistema de clasificación climática de Köppen. Universidad Nacional Autónoma de México, México, Instituto de Geografía. (In Spanish)

  16. Álvarez Armenta R, Peña-Valdivia CB (2009) Structural polysaccharides in xoconostle (Opuntia matudae) fruits with different ripening stages. J Prof Assoc Cactus Dev 11:26–44

  17. Contreras-Padilla M, Rodríguez-García ME, Gutiérrez-Cortez E, Valderrama-Bravo M del C, Rojas-Molina JI, Rivera-Muñoz EM (2016) Physicochemical and rheological characterization of Opuntia ficus mucilage at three different maturity stages of cladode. Eur Polym J 78:226–234

  18. Colunga-García Marín P, Hernández XE, Castillo MA (1986) Variación morfológica, manejo agrícola tradicional y grado de domesticación de Opuntia spp. en El Bajío guanajuatense. Agrociencia 65:7–49. (In Spanish)

  19. Camacho CO, Peña-Valdivia CB, Sánchez-Urdaneta A (2007) El potencial de agua del suelo en el crecimiento y contenido de polisacáridos estructurales de nopalito (Opuntia spp.). Rev Fac Agron LUZ 24:254–259. (In Spanish)

  20. Ghanem ME, Han R-M, Classen B, Quetin-Leclerq J, Mahy G, Ruan C-J, Qin P, Pérez-Alfocea F, Lutts S (2010) Mucilage and polysaccharides in the halophyte plant species Kosteletzkya virginica: localization and composition in relation to salt stress. J Plant Physiol 167:382–392

    Article  CAS  Google Scholar 

  21. Popper ZA, Fry SC (2004) Primary cell wall composition of Pteridophytes and Spermatophytes. New Phytol 164:165–174

    Article  CAS  Google Scholar 

  22. Gall H, Philippe F, Domon J-M, Gillet F, Pelloux J, Rayon C (2015) Cell wall metabolism in response to abiotic stress. Plants 4:112–166

    Article  Google Scholar 

  23. York WS (2004) Structural analysis of xyloglucans produced by diverse plant species- evolutionary and functional implications. Tsukuba University, Invited lecture. Japan

  24. Medina-Torres L, Brito-de la Fuente E, Torrestiana-Sánchez B, Katthain R (2000) Rheological properties of the mucilage gum (Opuntia ficus-indica). Food Hydrocoll 14:417–424

    Article  CAS  Google Scholar 

  25. Goycoolea FM, Cárdenas A (2003) Pectins from Opuntia spp.: a short review. J Prof Assoc Cactus Dev 5:17–29

    Google Scholar 

  26. Cárdenas A, Higuera-Ciapara I, Goycoolea FM (1997) Rheology and aggregation of cactus (Opuntia ficus-indica) mucilage in solution. J Prof Assoc Cactus Dev 2:152–159

    Google Scholar 

  27. Koocheki A, Mortazavi SA, Shahidi F, Razavi SMA, Taherian AR (2009) Rheological properties of mucilage extracted from Alyssum homolocarpum seed as a new source of thickening agent. J Food Eng 91:490–496

    Article  CAS  Google Scholar 

  28. Rao MA (2007) Flow and functional models for rheological properties of fluid foods. In: Rao MA (ed) Rheology of fluid and semisolid foods. Springer, New York, pp 27–58

    Chapter  Google Scholar 

  29. Forni E, Penci M, Polesello A (1994) A preliminary characterization of some pectins from quince fruit (Cydonia oblonga Mill.) and prickly pear (Opuntia ficus-indica) peel. Carbohydr Polym 23:231–234

    Article  CAS  Google Scholar 

  30. Lira-Ortiz AL, Reséndiz-Vega F, Ríos-Leal E, Contreras-Esquivel JC, Chavarría-Hernández N, Vargas-Torres A, Rodríguez-Hernández AI (2014) Pectins from waste of prickly pear fruits (Opuntia albicarpa Scheinvar ‘Reyna’): chemical and rheological properties. Food Hydrocoll 37:93–99

    Article  CAS  Google Scholar 

  31. Mesbahi G, Jamalian J, Farahnaky A (2005) A comparative study on functional properties of beet and citrus pectins in food systems. Food Hydrocoll 19:731–738

    Article  CAS  Google Scholar 

  32. Rascón-Chu A, Martínez-López AL, Carvajal-Millán E, Ponce de León-Renova NE, Márquez-Escalante JA, Romo-Chacón A (2009) Pectin from low quality ‘Golden Delicious’ apples: composition and gelling capability. Food Chem 116:101–103

    Article  Google Scholar 

  33. Wang Q, Cui SW (2005) Food carbohydrates: chemistry, physical properties, and applications. Taylor Francis, Florida

    Google Scholar 

  34. Agoda-Tandjawa G, Durand S, Berot S, Blassel C, Gaillard C, Garnier C. Doublier JL (2010) Rheological characterization of microfibrillated cellulose suspensions after freezing. Carbohydr Polym 80:677–686

  35. Yasar F, Togrul H, Arslan N (2007) Flow properties of cellulose and carboxymethyl of orange peel. J Food Eng 81:187–199

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. B. Peña-Valdivia.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Palacios, C., Peña-Valdivia, C.B., Rodríguez-Hernández, A.I. et al. Rheological Flow Behavior of Structural Polysaccharides from Edible Tender Cladodes of Wild, Semidomesticated and Cultivated ‘Nopal’ (Opuntia) of Mexican Highlands. Plant Foods Hum Nutr 71, 388–395 (2016). https://doi.org/10.1007/s11130-016-0573-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-016-0573-2

Keywords

Navigation