Skip to main content
Log in

Impact on Vitamin D2, Vitamin D4 and Agaritine in Agaricus bisporus Mushrooms after Artificial and Natural Solar UV Light Exposure

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Commercial mushroom production can expose mushrooms post-harvest to UV light for purposes of vitamin D2 enrichment by converting the naturally occurring provitamin D2 (ergosterol). The objectives of the present study were to artificially simulate solar UV-B doses occurring naturally in Central Europe and to investigate vitamin D2 and vitamin D4 production in sliced Agaricus bisporus (button mushrooms) and to analyse and compare the agaritine content of naturally and artificially UV-irradiated mushrooms. Agaritine was measured for safety aspects even though there is no rationale for a link between UV light exposure and agaritine content. The artificial UV-B dose of 0.53 J/cm2 raised the vitamin D2 content to significantly (P < 0.001) higher levels of 67.1 ± 9.9 μg/g dry weight (DW) than sun exposure (3.9 ± 0.8 μg/g dry DW). We observed a positive correlation between vitamin D4 and vitamin D2 production (r2 = 0.96, P < 0.001) after artificial UV irradiation, with vitamin D4 levels ranging from 0 to 20.9 μg/g DW. The agaritine content varied widely but remained within normal ranges in all samples. Irrespective of the irradiation source, agaritine dropped dramatically in conjunction with all UV-B doses both artificial and natural solar, probably due to its known instability. The biological action of vitamin D from UV-exposed mushrooms reflects the activity of these two major vitamin D analogues (D2, D4). Vitamin D4 should be analysed and agaritine disregarded in future studies of UV-exposed mushrooms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

EPS:

Expanded polystyrene

EC:

European Commission

DW:

Dry weight

FW:

Fresh weight

HPLC:

High-performance liquid chromatography

IU:

International unit

OECD:

Organisation for Economic Co-operation and Development

r:

Correlation coefficient

UTC:

Universal Time Coordinated

UV:

Ultraviolet

References

  1. Havinga E, de Kock RJ, Rappoldt MP (1960) The photochemical interconversions of provitamin D, lumisterol, previtamin D and tachysterol. Tetrahedron 11:276–284. doi:10.1016/S0040-4020(01)93178-3

    Article  CAS  Google Scholar 

  2. Urbain P, Singler F, Ihorst G, et al. (2011) Bioavailability of vitamin D2 from UV-B-irradiated button mushrooms in healthy adults deficient in serum 25-hydroxyvitamin D: a randomized controlled trial. Eur J Clin Nutr 65:965–971. doi:10.1038/ejcn.2011.53

    Article  CAS  Google Scholar 

  3. Simon RR, Borzelleca JF, DeLuca HF, Weaver CM (2013) Safety assessment of the post-harvest treatment of button mushrooms (Agaricus bisporus) using ultraviolet light. Food Chem Toxicol 56:278–289. doi:10.1016/j.fct.2013.02.009

    Article  CAS  Google Scholar 

  4. Cashman KD, Kiely M, Seamans KM, Urbain P (2016) Effect of ultraviolet light-exposed mushrooms on vitamin D status: liquid chromatography-tandem mass spectrometry reanalysis of Biobanked sera from a randomized controlled trial and a systematic review plus meta-analysis. J Nutr 146:565–575. doi:10.3945/jn.115.223784

    Article  CAS  Google Scholar 

  5. Krings U, Berger RG (2014) Dynamics of sterols and fatty acids during UV-B treatment of oyster mushroom. Food Chem 149:10–14. doi:10.1016/j.foodchem.2013.10.064

    Article  CAS  Google Scholar 

  6. Simon RR, Phillips KM, Horst RL, Munro IC (2011) Vitamin D mushrooms: comparison of the composition of button mushrooms (Agaricus bisporus) treated postharvest with UVB light or sunlight. J Agric Food Chem 59:8724–8732. doi:10.1021/jf201255b

    Article  CAS  Google Scholar 

  7. Regulation (EC) (1997) No 258/97 of the European Parliament and of the Council of 27 January 1997 concerning novel foods and novel food ingredients. Off J Eur Union 1–6. ISSN: 0378–6978

  8. Joint FAO/WHO Expert Consultation on Biotechnology and Food Safety (1996) Biotechnology and food safety / report of a joint FAO/WHO consultation. FAO/WHO, Rome

    Google Scholar 

  9. Phillips KM, Rasor A (2013) A nutritionally meaningful increase in vitamin D in retail mushrooms is attainable by exposure to sunlight prior to consumption. J Nutr Food Sci 3:236. doi:10.4172/2155-9600.1000236

    Google Scholar 

  10. Kristensen HL, Rosenqvist E, Jakobsen J (2012) Increase of vitamin D2 by UV-B exposure during the growth phase of white button mushroom (Agaricus bisporus). Food Nutr Res 56. doi:10.3402/fnr.v56i0.7114

  11. Phillips KM, Horst RL, Koszewski NJ, Simon RR (2012) Vitamin D4 in mushrooms. PLoS One 7:e40702. doi:10.1371/journal.pone.0040702

    Article  CAS  Google Scholar 

  12. Shephard SE, Gunz D, Schlatter C (1995) Genotoxicity of agaritine in the lacI transgenic mouse mutation assay: evaluation of the health risk of mushroom consumption. Food Chem Toxicol 33:257–264. doi:10.1016/0278-6915(94)00142-B

    Article  CAS  Google Scholar 

  13. Friederich U, Fischer B, Lüthy J, et al. (1986) The mutagenic activity of agaritine--a constituent of the cultivated mushroom Agaricus bisporus--and its derivatives detected with the salmonella/mammalian microsome assay (Ames test). Z Lebensm Unters Forsch 183:85–89

    Article  CAS  Google Scholar 

  14. Organisation for Economic Co-operation and Development (2007) Consensus document on compositional considerations for new varieties of the cultivated mushrooms “Agaricus bisporus” key food and feed nutrients, anti-nutrients and toxicants. OECD Publishing, Paris

    Google Scholar 

  15. Kiely M, Cashman KD, the ODIN Consortium (2015) The ODIN project: development of food-based approaches for prevention of vitamin D deficiency throughout life: the ODIN project. Nutr Bull 40:235–246. doi:10.1111/nbu.12159

    Article  Google Scholar 

  16. Urbain P, Jakobsen J (2015) Dose–response effect of sunlight on vitamin D2 production in Agaricus bisporus mushrooms. J Agric Food Chem 63:8156–8161. doi:10.1021/acs.jafc.5b02945

    Article  CAS  Google Scholar 

  17. Burild A, Frandsen HL, Jakobsen J (2014) Simultaneous quantification of vitamin D3, 25-hydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 in human serum by LC-MS/MS. Scand J Clin Lab Invest 74:418–423. doi:10.3109/00365513.2014.900694

    Article  CAS  Google Scholar 

  18. De Luca HF, Weller M, Blunt JW, Neville PF (1968) Synthesis, biological activity, and metabolism of 22,23-3H vitamin D4. Arch Biochem Biophys 124:122–128

    Article  Google Scholar 

  19. Andersson HC, Gry J (2004) Phenylhydrazines in the cultivated mushroom (Agaricus bisporus): occurrence, biological properties. Risk Assessment and Recommendations, Nordic Council of Ministers

    Google Scholar 

  20. Hajslová J, Hájková L, Schulzová V, et al. (2002) Stability of agaritine - a natural toxicant of Agaricus mushrooms. Food Addit Contam 19:1028–1033. doi:10.1080/02652030210157691

    Article  Google Scholar 

  21. Schulzová V, Hajslová J, Peroutka R, et al. (2002) Influence of storage and household processing on the agaritine content of the cultivated Agaricus mushroom. Food Addit Contam 19:853–862. doi:10.1080/02652030210156340

    Article  Google Scholar 

  22. Phillips KM, Rasor AS (2016) A mixed mushroom control material to facilitate inter-laboratory harmonization of mushroom composition analyses. J Food Compos Anal 48:48–66. doi:10.1016/j.jfca.2016.01.001

    Article  CAS  Google Scholar 

  23. Holick MF (2003) Vitamin D: a millenium perspective. J Cell Biochem 88:296–307. doi:10.1002/jcb.10338

    Article  CAS  Google Scholar 

  24. Institute of Medicine (2011) Dietary reference intakes for calcium and vitamin D. National Academies Press, Washington, DC, USA

  25. Jasinghe VJ, Perera CO, Barlow PJ (2006) Vitamin D2 from irradiated mushrooms significantly increases femur bone mineral density in rats. J Toxic Environ Health A 69:1979–1985. doi:10.1080/15287390600751413

    Article  CAS  Google Scholar 

  26. Roberts JS, Teichert A, McHugh TH (2008) Vitamin D2 formation from post-harvest UV-B treatment of mushrooms (Agaricus bisporus) and retention during storage. J Agric Food Chem 56:4541–4544. doi:10.1021/jf0732511

    Article  CAS  Google Scholar 

  27. Ko JA, Lee BH, Lee JS, Park HJ (2008) Effect of UV-B exposure on the concentration of vitamin D2 in sliced shiitake mushroom (Lentinus edodes) and white button mushroom (Agaricus bisporus). J Agric Food Chem 56:3671–3674. doi:10.1021/jf073398s

    Article  CAS  Google Scholar 

  28. Jasinghe VJ, Perera CO (2005) Distribution of ergosterol in different tissues of mushrooms and its effect on the conversion of ergosterol to vitamin D2 by UV irradiation. Food Chem 92:541–546. doi:10.1016/j.foodchem.2004.08.022

    Article  CAS  Google Scholar 

  29. Wu W-J, Ahn B-Y (2014) Statistical optimization of ultraviolet irradiate conditions for vitamin D2 synthesis in oyster mushrooms (Pleurotus ostreatus) using response surface methodology. PLoS One 9:e95359. doi:10.1371/journal.pone.0095359

    Article  Google Scholar 

  30. Boomsma F, Jacobs HJC, Havinga E, van der Gen A (1977) The “overirradiation products” of previtamin D and tachysterol: toxisterols. Recl Trav Chim Pays-Bas 96:104–112. doi:10.1002/recl.19770960405

    Article  CAS  Google Scholar 

  31. Jasinghe VJ, Perera CO (2006) Ultraviolet irradiation: the generator of vitamin D2 in edible mushrooms. Food Chem 95:638–643. doi:10.1016/j.foodchem.2005.01.046

    Article  CAS  Google Scholar 

  32. Teichmann A, Dutta PC, Staffas A, Jägerstad M (2007) Sterol and vitamin D2 concentrations in cultivated and wild grown mushrooms: effects of UV irradiation. LWT – Food Sci Technol 40:815–822. doi:10.1016/j.lwt.2006.04.003

    Article  CAS  Google Scholar 

  33. Webb AR, Decosta BR, Holick MF (1989) Sunlight regulates the cutaneous production of vitamin D3 by causing its photodegradation. J Clin Endocrinol Metab 68:882–887. doi:10.1210/jcem-68-5-882

    Article  CAS  Google Scholar 

  34. Giri SK, Prasad S (2009) Quality and moisture sorption characteristics of microwave-vacuum, air and freeze-dried button mushroom (Agaricus bisporus). J Food Process Preserv 33:237–251. doi:10.1111/j.1745-4549.2008.00338.x

    Article  Google Scholar 

  35. Keegan R-JH LZ, Bogusz JM, et al. (2013) Photobiology of vitamin D in mushrooms and its bioavailability in humans. Dermatologica 5:165–176. doi:10.4161/derm.23321

    Google Scholar 

  36. Liu J-W, Beelman RB, Lineback DR, Speroni JJ (1982) Agaritine content of fresh and processed mushrooms [Agaricus bisporus (Lange) Imbach]. J Food Sci 47:1542–1544. doi:10.1111/j.1365-2621.1982.tb04978.x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to C. Cuerten for editorial assistance, to D. McConnon, A. Clancy and C. Beirne from Monaghan Mushrooms for their assistance on preparing samples for analysis and conducting analyses of agaritine, to I. Mayer and F. Meinhardt form the German Federal Office for Radiation Protection for receiving complete data of spectral irradiance, and to E. Maier, F. Jaeger and F. Lorenz from University Medical Center’s central kitchen for providing material for the experiments and storage of samples, and to K. Saliger for helping out with sample preparation.

Authors Contribution

P.U., study concept, study performance and statistical analysis; J.V., analytics, critical review; J.J., analytics, critical review; all authors interpreted the data, drafted the manuscript, saw and approved the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Urbain.

Ethics declarations

Conflict of Interest

P.U. and J.J declare no conflict of interest. J.V. is an employee of Monaghan Mushrooms, which is a commercial mushroom producer and is interested in understanding the impact of sunlight exposure into the conversion of ergosterol into vitamin D2. The mushroom samples were blinded by P.U. before shipment to J.V. for agaritine analyses.

Funding/Support

This project has received funding from the European Union’s Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 613,977 (ODIN).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urbain, P., Valverde, J. & Jakobsen, J. Impact on Vitamin D2, Vitamin D4 and Agaritine in Agaricus bisporus Mushrooms after Artificial and Natural Solar UV Light Exposure. Plant Foods Hum Nutr 71, 314–321 (2016). https://doi.org/10.1007/s11130-016-0562-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-016-0562-5

Keywords

Navigation