Skip to main content
Log in

Isolated Conglutin γ from Lupin, but not Phytate, Lowers Serum Cholesterol Without Influencing Vascular Lesion Development in the ApoE-deficient Mouse Model

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Conglutin γ and phytate are considered as potential biofunctional compounds of lupin protein isolate, but their impact on vascular health is unknown. This study aimed to investigate the effect of conglutin γ and phytate, respectively, on circulating levels of sterols, markers of cholesterol biosynthesis and minerals, and on the development and progression of aortic lesions in apoE-deficient mice. To this end, mice were fed a western diet with either casein (200 g/kg; served as a control), conglutin γ from L. angustifolius (200 g/kg) or casein (200 g/kg) supplemented with phytate (5 g/kg) for 16 weeks. Here we found that conglutin γ but not phytate was capable of reducing the circulating concentration of cholesterol. Plasma levels of desmosterol and lathosterol as markers of the cholesterol synthesis were not affected, and 7-dehydrocholesterol was even higher in mice fed conglutin γ than in mice fed casein or casein + phytate. All mice developed pronounced aortic lesions, but histological characterization of plaque area and composition showed no differences between the three groups of mice. Conclusively, conglutin γ exerts cholesterol-lowering effects but appears to have no anti-atherosclerotic properties in the apoE-deficient mice. Phytate neither affected plasma cholesterol nor aortic lesion development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

DM:

Dry matter

ICP OES:

Inductively coupled plasma optical emission spectroscopy

L :

Lupinus

25(OH)D3 :

25-hydroxyvitamin D3

7-DHC:

7-dehydrocholesterol

References

  1. Cerletti P, Duranti M, Restan P (1983) Properties of lupine proteins relevant to their nutritional performance. Plant Foods Hum Nutr 32:145–154

    Article  CAS  Google Scholar 

  2. Bettzieche A, Brandsch C, Weisse K, Hirche F, Eder K, Stangl GI (2008) Lupin protein influences the expression of hepatic genes involved in the fatty acid synthesis and triacylglycerol hydrolysis of adult rats. Br J Nutr 99:952–962

    Article  CAS  Google Scholar 

  3. Brandsch C, Kappis D, Weisse K, Stangl GI (2010) Effects of untreated and thermally treated lupin protein on plasma and liver lipids of rats fed a hypercholesterolemic high fat or high carbohydrate diet. Plant Foods Hum Nutr 65:410–446. doi:10.1007/s11130-010-0201-5

    Article  CAS  Google Scholar 

  4. Fontanari GG, Batistuti JP, da Cruz RJ, Saldiva PHN, Arêas JAG (2012) Cholesterol-lowering effect of whole lupin (Lupinus albus) seed and its protein isolate. Food Chem 132:1521–1526

    Article  CAS  Google Scholar 

  5. Weisse K, Brandsch C, Zernsdorf B, Nkengfack Nembongwe GS, Hofmann K, Eder K, Stangl GI (2010) Lupin protein compared to casein lowers the LDL cholesterol:HDL cholesterol-ratio of hypercholesterolemic adults. Eur J Nutr 49:65–71

    Article  CAS  Google Scholar 

  6. Bähr M, Fechner A, Krämer J, Kiehntopf M, Jahreis G (2013) Lupin protein positively affects plasma LDL cholesterol and LDL:HDL cholesterol ratio in hypercholesterolemic adults after four weeks of supplementation: a randomized, controlled crossover study. Nutr J 12:107. doi:10.1186/1475-2891-12-107

    Article  Google Scholar 

  7. Marchesi M, Parolini C, Diani E, Rigamonti E, Cornelli L, Arnoldi A, Sirtori CR, Chiesa G (2008) Hypolipidaemic and anti-atherosclerotic effects of lupin proteins in a rabbit model. Br J Nutr 100:707–710

    Article  CAS  Google Scholar 

  8. Weisse K, Brandsch C, Hirche F, Eder K, Stangl GI (2010) Lupin protein isolate and cysteine-supplemented casein reduce calcification of atherosclerotic lesions in apoE-deficient mice. Br J Nutr 103:180–188

    Article  CAS  Google Scholar 

  9. Sirtori CR, Lovati MR, Manzoni C, Castiglioni S, Duranti M, Magni C, Morandi S, D’Agostina A, Arnoldi A (2004) Proteins of white lupin seed, a naturally isoflavone-poor legume, reduce cholesterolemia in rats and increase LDL receptor activity in HepG2 cells. J Nutr 134:18–23

    CAS  Google Scholar 

  10. Schlemmer U, Frølich W, Prieto RM, Grases F (2009) Phytate in foods and significance for humans: food sources, intake, processing, bioavailability, protective role and analysis. Mol Nutr Food Res 53:S330–S375

    Article  Google Scholar 

  11. Rimbach G, Pallauf J, Brandt K, Most E (1995) Effect of phytic acid and microbial phytase on Cd accumulation, Zn status, and apparent absorption of Ca, P, Mg, Fe, Zn, Cu, and Mn in growing rats. Ann Nutr Metab 39:361–370

    Article  CAS  Google Scholar 

  12. Pallauf J, Rimbach G (1997) Nutritional significance of phytic acid and phytase. Arch Tierernahr 50:301–319

    Article  CAS  Google Scholar 

  13. Onomi S, Okazaki Y, Katayama T (2004) Effect of dietary level of phytic acid on hepatic and serum lipid status in rats fed a high-sucrose diet. Biosci Biotechnol Biochem 68:1379–1381

    Article  CAS  Google Scholar 

  14. Lee SH, Park HJ, Cho SY, Jung HJ, Cho SM, Cho YS, Lillehoj HS (2005) Effects of dietary phytic acid on serum and hepatic lipid levels in diabetic KK mice. Nutr Res 25:869–876

    Article  CAS  Google Scholar 

  15. Radtke J, Geissler S, Schutkowski A, Brandsch C, Kluge H, Duranti MM, Keller S, Jahreis G, Hirche F, Stangl GI (2014) Lupin protein isolate versus casein modifies cholesterol excretion and mRNA expression of intestinal sterol transporters in a pig model. Nutr Metab 11:9. doi:10.1186/1743-7075-11-9

    Article  Google Scholar 

  16. Grases F, Prieto RM, Sanchis P, Saus C, De Francisco T (2008) Role of phytate and osteopontin in the mechanism of soft tissue calcification. J Nephrol 21:768–775

    CAS  Google Scholar 

  17. Grases F, Sanchis P, Perello J, Isern B, Prieto RM, Fernández-Palomeque C, Torres JJ (2007) Effect of crystallization inhibitors on vascular calcifications induced by vitamin D – a pilot study in Sprague–Dawley rats. Circ J 71:1152–1156

    Article  CAS  Google Scholar 

  18. Zaragoza C, Gomez-Guerrero C, Martin-Ventura JL, Blanco-Colio L, Lavin B, Mallavia B, Tarin C, Mas S, Ortiz A, Egido J (2011) Animal models of cardiovascular diseases. J Biomed Biotechnol 2011:497841. doi:10.1155/2011/497841

    Article  Google Scholar 

  19. Pendse AA, Arbones-Mainar JM, Johnson LA, Altenburg MK, Maeda N (2009) Apolipoprotein E knock-out and knock-in mice: atherosclerosis, metabolic syndrome, and beyond. J Lipid Res 50(Suppl):S178–S182. doi:10.1194/jlr. R800070-JLR200

    Google Scholar 

  20. D-Agostina A, Antonioni C, Resta D, Arnoldi A, Bez J, Knauf U, Wäsche A (2006) Optimization of a pilot-scale process for producing lupin protein isolates with valuable technological properties and minimum thermal damage. J Agric Food Chem 54:92–98

    Article  CAS  Google Scholar 

  21. Bassler R (1976) Die chemische Untersuchung von Futtermitteln, 3rd edn. vol. 3. Methodenbuch. VDLUFA-Verlag, Darmstadt

  22. Eder K, Peganova S, Kluge H (2001) Studies on the tryptophan requirement of piglets. Arch Tierernahr 55:281–297

    Article  CAS  Google Scholar 

  23. Fontaine J, Bech-Andersen S, Bütikofer U, Froidmont-Göritz I (1998) Determination of tryptophan in feed by HPLC – development of an optimal hydrolysis and extraction procedure by the EU commission DG XII in three international collaborative studies. Agribiol Res 51:97–108

    CAS  Google Scholar 

  24. Harland BF, Oberleas D (1986) Anion exchange method for determination of phytate in foods: collaborative study. J Assoc Off Anal Chem 69:667–670

    CAS  Google Scholar 

  25. National Research Council (NRC), Committee on Animal Nutrition (1995) Nutrient requirements of laboratory animals. National Academy Press, Washington

    Google Scholar 

  26. Honda A, Yamashita K, Hara T, Ikegami T, Miyazaki T, Shirai M, Xu G, Numazawa M, Matsuzaki Y (2009) Highly sensitive quantification of key regulatory oxysterols in biological samples by LC-ESI-MS/MS. J Lipid Res 50:350–357

    Article  CAS  Google Scholar 

  27. Mattila PH, Piironen VI, Uusi-Rauva EJ, Koivistoinen PE (1995) Contents of cholecalciferol, ergocalciferol, and their 25-hydroxylated metabolites in milk products and raw meat and liver as determined by HPLC. J Agric Food Chem 43:2394–2399

    Article  CAS  Google Scholar 

  28. Huynh NN, Chin-Dusting J (2006) Amino acids, arginase and nitric oxide in vascular health. Clin Exp Pharmacol Physiol 33:1–8

    Article  CAS  Google Scholar 

  29. Hirche F, Schröder A, Knoth B, Stangl GI, Eder K (2006) Effect of dietary methionine on plasma and liver cholesterol concentrations in rats and expression of hepatic genes involved in cholesterol metabolism. Br J Nutr 95:879–888

    Article  CAS  Google Scholar 

  30. Foley RC, Gao LL, Spriggs A, Soo LY, Goggin DE, Smith PM, Atkins CA, Singh KB (2011) Identification and characterisation of seed storage protein transcripts from Lupinus angustifolius. BMC Plant Biol 11:59. doi:10.1186/1471-2229-11-59

    Article  CAS  Google Scholar 

  31. Lovati MR, Manzoni C, Castiglioni S, Parolari A, Magni C, Duranti M (2012) Lupin seed γ-conglutin lowers blood glucose in hyperglycaemic rats and increases glucose consumption of HepG2 cells. Br J Nutr 107:67–73. doi:10.1017/S0007114511002601

    Article  Google Scholar 

  32. Mardiewicz LH, Honke J, Haros M, Swiatecka D, Wróblewska B (2013) Diet shapes the ability of human intestinal microbiota to degrade phytate – in vitro studies. J Appl Microbiol 115:247–259. doi:10.1111/jam.12204

    Article  Google Scholar 

  33. Miettinen TA, Gylling H, Nissinen MJ (2011) The role of serum non-cholesterol sterols as surrogate markers of absolute cholesterol synthesis and absorption. Nutr Metab Cardiovasc Dis 21:765–769. doi:10.1016/j.numecd.2011.05.005

    Article  CAS  Google Scholar 

  34. Xu L, Korade Z, Porter NA (2010) Oxysterols from free radical chain oxidation of 7-dehydrocholesterol: product and mechanistic studies. J Am Chem Soc 132:2222–2232. doi:10.1021/ja9080265

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Federal Ministry of Education and Research of Germany (01EA1338B).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele I. Stangl.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 452 kb)

ESM 2

(DOC 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radtke, J., Schutkowski, A., Brandsch, C. et al. Isolated Conglutin γ from Lupin, but not Phytate, Lowers Serum Cholesterol Without Influencing Vascular Lesion Development in the ApoE-deficient Mouse Model. Plant Foods Hum Nutr 70, 113–118 (2015). https://doi.org/10.1007/s11130-015-0481-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-015-0481-x

Keywords

Navigation