Skip to main content
Log in

Ameliorating Effects of Fermented Rice Bran Extract on Oxidative Stress Induced by High Glucose and Hydrogen Peroxide in 3T3-L1 Adipocytes

  • ORIGINAL PAPER
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

In this study, we investigated whether fermented rice bran (FRB) can ameliorate the oxidative stress induced by high glucose and hydrogen peroxide (H2O2) in 3T3-L1 adipocytes by analyzing reactive oxygen species (ROS), oil red O staining, as well as the expression of mRNAs related to glucose homeostasis and adipogenesis. It was first confirmed that rice bran fermented by Issatchenkia orientalis MFST1 extract increased free phenolic content compared to non-fermented rice bran. The FRB extract strongly inhibited ROS generation and upregulated the expression of PPAR-γ and adiponectin. Moreover, FRB upregulated GLUT4 related to glucose transportation and insulin sensitivity. Taken together, FRB extract ameliorated oxidative stress-induced insulin resistance by neutralizing free radicals and upregulating adiponectin in adipocytes. Our results provide information toward understanding the beneficial effects of FRB on oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DCFDA:

2′ 7′-Dichlofluoroscein diacetate

DMEM:

Dulbecco’s modified Eagle’s medium

DMSO:

Dimethyl sulfoxide

DPPH:

1,1-diphenyl-2-picrylhydrazyl

FA:

Ferulic acid

FRB:

Fermented rice bran

GLUT4:

Glucose transporter type 4

HBSS:

Hank’s balanced salt solution

NIDDM:

Noninsulin-dependent diabetes mellitus

PPAR-γ:

Peroxisome proliferator-activated receptor gamma

RB:

Rice bran

ROS:

Reactive oxygen species

RT-PCR:

Reverse transcriptase-polymerase chain reaction

TNF-α:

Tumor necrosis factor alpha

References

  1. Cefalu WT (2001) Insulin resistance: Cellular and clinical concepts. Exp Biol Med (Maywood) 226:13–26

    CAS  Google Scholar 

  2. Houstis N, Rosen ED, Lander ES (2006) Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440:944–948

    Article  CAS  Google Scholar 

  3. Mlinar B, Marc J, Janez A, Pfeifer M (2007) Molecular mechanisms of insulin resistance and associated diseases. Clinica Chimica Acta 375:20–35

    Article  CAS  Google Scholar 

  4. Trayhurn P, Beattie JH (2001) Physiological role of adipose tissue: White adipose tissue as an endocrine and secretory organ. Proc Nutr Soc 60:329–339

    Article  CAS  Google Scholar 

  5. Cross CE, Halliwell B, Borish ET, Pryor WA, Ames BN, Saul RL, McCord JM, Harman D (1987) Oxygen radicals and human disease. Ann Intern Med 107:526–545

    CAS  Google Scholar 

  6. Aragno M, Parola S, Tamagno E, Brignardello E, Manti R, Danni O, Boccuzzi G (2000) Oxidative derangement in rat synaptosomes induced by hyperglycaemia: Restorative effect of dehydroepiandrosterone treatment. Biochem Pharmacol 60:389–395

    Article  CAS  Google Scholar 

  7. Heffetz D, Bushkin I, Dror R, Zick Y (1990) The insulinomimetic agents H202 and vanadate stimulate protein tyrosine phosphorylation in intact cells. J Biol Chem 265:2896–2902

    CAS  Google Scholar 

  8. Hayes GR, Lockwood DH (1987) Role of insulin receptor phosphorylation in the insulinomimetic effects of hydrogen peroxide. Proc Natl Acad Sci USA 84:8115–8119

    Article  CAS  Google Scholar 

  9. Rudich A, Kozlovsky N, Potashnik R, Bashan N (1997) Oxidant stress reduces insulin responsiveness in 3T3-L1 adipocyte. Am J Physiol 272:E935–E940

    CAS  Google Scholar 

  10. Johansen JS, Harris AK, Rychly DJ, Ergul A (2005) Oxidative stress and the use of antioxidants in diabetes: Linking basic science to clinical practice. Cardiovasc Diabetol 29:5–15

    Article  Google Scholar 

  11. Juliano BO (1985) Rice bran. In: Juliano BO (ed) Rice: chemistry and Technology. American Association of Cereal Chemists, St Paul, pp 647–687

    Google Scholar 

  12. Srinivasan M, Sudheer AR, Menon VP (2007) Ferulic acid: Therapeutic potential through its antioxidant property. J Clin Biochem Nutr 40:92–100

    Article  CAS  Google Scholar 

  13. Liyama K, Lam TBT, Stone BA (1994) Covalent cross-links in the cell wall. Plant Physiol 104:315–320

    Google Scholar 

  14. Fazary AE, Ju YH (2007) Feruloyl esterases as biotechnological tools: Current and future perspectives. Acta Bioch Bioph Sin 39:811–828

    Article  CAS  Google Scholar 

  15. Crepin VF, Faulds CB, Connerton IF (2004) Functional classification of the microbial feruloyl esterases. Appl Microbiol Biotechnol 63:647–652

    Article  CAS  Google Scholar 

  16. Kim KM, Yu KW, Kang DH, Suh HJ (2002) Anti-stress and anti-fatigue effect of fermented rice bran. Phytother Res 16:700–702

    Article  CAS  Google Scholar 

  17. Kim HY, Kim JH, Yang SB, Hong SG, Lee SA, Hwang SJ, Shin KS, Suh HJ, Park MH (2007) A polysaccharide extracted from rice bran fermented with Lentinus edodes enhances natural killer cell activity and exhibits anticancer effect. J Med Food 10:25–31

    Article  CAS  Google Scholar 

  18. Seo YK, Jung SH, Song KY, Park JK, Park CS (2010) Anti-photoaging effect of fermented rice bran extract on UV-induced normal skin fibroblasts. Eur Food Res Technol 231:163–169

    Article  CAS  Google Scholar 

  19. Jung EH, Kim SR, Hwang IK, Ha TY (2007) Hypoglycemic effects of a phenolic acid fraction of rice bran and ferulic acid in C57BL/KsJ-db/db mice. J Agric Food Chem 55:9800–9804

    Article  CAS  Google Scholar 

  20. Koh JH, Suh HJ (2009) Biological activities of thermo-tolerant microbes from fermented rice bran as an alternative microbial feed additive. Appl Biochem Biotechnol 157:420–430

    Article  CAS  Google Scholar 

  21. Kim D, Fan JP, Chung HC, Han GD (2010) Changes in extractability and antioxidant activity of Jerusalem artichoke (Helianthus tuberosus L.) tubers by various high hydrostatic pressure treatments. Food Sci Biotechnol 19:1365–1371

    Article  Google Scholar 

  22. Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181:1199–1200

    Article  CAS  Google Scholar 

  23. Fan JP, Kim HS, Han GD (2009) Induction of apoptosis by L-carnitine through regulation of two main pathways in Hepa1c1c 7 cells. Amino Acids 36:365–372

    Article  CAS  Google Scholar 

  24. Williamson G, Kroon PA, Faulds CB (1998) Hairy plant polysaccharides: A close shave with microbial esterases. Microbiology 144:2011–2023

    Article  CAS  Google Scholar 

  25. Shimoyama T, Yamaguchi S, Takahashi K, Katsuta H, Ito E, Seki H, Ushikawa K, Katahira H, Yoshimoto K, Ohno H, Nagamatsu S, Ishida H (2006) Gliclazide protects 3T3-L1 adipcytes against insulin resistance induced by hydrogen peroxide with restoration of GLUT4 translocation. Metabol Clin Exp 55:722–730

    CAS  Google Scholar 

  26. Fukuoka H, Iida K, Nishizawa H, Imanaka M, Takeno R, Iguchi G, Takahashi M, Okimura Y, Kaji H, Chihara K, Takahashi Y (2010) IGF-I stimulates reactive oxygen species (ROS) production and inhibits insulin-dependent glucose uptake via ROS in 3T3-L1 adipocytes. Growth Horm IGF Res 20:212–229

    Article  CAS  Google Scholar 

  27. Rudich A, Tirosh A, Potashnik R, Hemi R, Kanety H, Bashan N (1998) Prolonged oxidative stress impairs insulin-induced GLUT translocation in 3T3-L1 adipocytes. Diabetes 47:1562–1569

    Article  CAS  Google Scholar 

  28. Kahn BB, Flier JS (2000) Obesity and insulin resistance. J Clin Invest 106:473–481

    Article  CAS  Google Scholar 

  29. Ukkola O, Santaniemi M (2002) Adiponectin: A link between excess adiposity and associated comorbidities? J Mol Med 80:696–702

    Article  CAS  Google Scholar 

  30. Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda M, Nagaretani H, Furuyama N, Kondo H, Takahashi M, Arita Y, Komuro R, Ouchi N, Kihara S, Tochino Y, Okutomi K, Horie M, Takeda S, Aoyama T, Funahashi T, Matsuzawa Y (2002) Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med 6:731–737

    Article  Google Scholar 

  31. Kubota N, Terauchi Y, Yamauchi T, Kubota T, Moroi M, Matsui J, Eto K, Yamashita T, Kamon J, Satoh H, Yano W, Froguel P, Nagai R, Kimura S, Kadowaki T, Noda T (2002) Disruption of adiponectin causes insulin resistance and neointimal formation. J Biol Chem 277:25863–25866

    Article  CAS  Google Scholar 

  32. Fasshauer M, Klein J, Neumann S, Eszlinger M, Paschke R (2001) Adiponectin gene expression is inhibited by beta-adrenergic stimulation via protein kinase A in 3T3-L1 adipocytes. FEBS Lett 507:142–146

    Article  CAS  Google Scholar 

  33. Okada Y, Okada M, Sagesaka Y (2010) Screening of dried plant seed extracts for adiponectin production activity and tumor necrosis factor-alpha inhibitory activity on 3T3-L1 adipocytes. Plant Foods Hum Nutr 65:225–232

    Article  CAS  Google Scholar 

  34. Bryant NJ, Govers R, James DE (2002) Regulated transport of the glucose transporter GLUT4. Nat Rev Mol Cell Biol 3:267–277

    Article  CAS  Google Scholar 

  35. Pessler D, Rudich A, Bashan N (2001) Oxidative stress impairs nuclear proteins binding to the insulin responsive element in the GLUT4 promoter. Diabetologia 44:2156–2164

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gi Dong Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, D., Han, G.D. Ameliorating Effects of Fermented Rice Bran Extract on Oxidative Stress Induced by High Glucose and Hydrogen Peroxide in 3T3-L1 Adipocytes. Plant Foods Hum Nutr 66, 285–290 (2011). https://doi.org/10.1007/s11130-011-0243-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-011-0243-3

Keywords

Navigation