Skip to main content
Log in

Statistics of projective measurement on a quantum probe as a witness of noncommutativity of algebra of a probed system

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We consider a quantum probe P undergoing pure dephasing due to its interaction with a quantum system S. The dynamics of P is then described by a well-defined sub-algebra of operators of S,  i.e. the “accessible” algebra on S from the point of view of P. We consider sequences of n measurements on P,  and investigate the relationship between Kolmogorov consistency of probabilities of obtaining sequences of results with various n,  and commutativity of the accessible algebra. For a finite-dimensional S we find conditions under which the Kolmogorov consistency of measurement on P,  given that the state of S can be arbitrarily prepared, is equivalent to the commutativity of this algebra. These allow us to describe witnesses of nonclassicality (understood here as noncommutativity) of part of S that affects the probe. For P being a qubit, the witness is particularly simple: observation of breaking of Kolmogorov consistency of sequential measurements on a qubit coupled to S means that the accessible algebra of S is noncommutative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The Hamiltonian in this example is time dependent; however, thanks to the commutative nature of the system, the analysis is the same as the one from Eq. (2) with mutually commuting conditioned Hamiltonians.

References

  1. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, USA (1955)

    MATH  Google Scholar 

  2. Alicki, R., Piani, M., Ryn, N.V.: Quantumness witnesses. J. Phys. Mathemat. Theor 41(49), 495303 (2008). https://doi.org/10.1088/1751-8113/41/49/495303

  3. Fröhlich, J., Schubnel, B.: Quantum Probability Theory and the Foundations of Quantum Mechanics (Springer Berlin Heidelberg, Berlin, Heidelberg, 2015), pp. 131–193. https://doi.org/10.1007/978-3-662-46422-9_7

  4. Aremua, I., Baloïtcha, E., Hounkonnou, M.N., Sodoga, K.: On Hilbert-Schmidt operator formulation of noncommutative quantum mechanics (Springer International Publishing, Cham, 2018), pp. 61–118. https://doi.org/10.1007/978-3-319-97175-9_3

  5. Griffiths, D.J.: Introduction to quantum mechanics, vol. 2 (Prentice Hall New Jersey, 1995)

  6. Sakurai, J.J., Tuan, S.F.: Modern Quantum Mechanics (Addison-Wesley Publishing Company, Inc, 1994)

  7. Bell, J.S., et al.: On the Einstein-Podolsky-Rosen paradox. Physics 1(3), 195–200 (1964)

    Article  MathSciNet  Google Scholar 

  8. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: Discord and related measures. Rev. Mod. Phys. 84, 1655–1707 (2012). https://doi.org/10.1103/RevModPhys.84.1655

    Article  ADS  Google Scholar 

  9. Alicki, R., Ryn, N.V.: A simple test of quantumness for a single system. J. Phys. Mathemat. Theor. 41(6), 062001 (2008). https://doi.org/10.1088/1751-8113/41/6/062001

  10. Facchi, P., Pascazio, S., Vedral, V., Yuasa, K.: Quantumness and entanglement witnesses. J. Phys. Mathemat. Theor. 45(10), 105302 (2012). https://doi.org/10.1088/1751-8113/45/10/105302

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Facchi, P., Ferro, L., Marmo, G., Pascazio, S.: Defining quantumness via the Jordan product. J. Phys. Mathemat. Theor. 47(3), 035301 (2013). https://doi.org/10.1088/1751-8113/47/3/035301

  12. Feller, W.: An Introduction to Probability Theory and its Applications, vol. 2 (John Wiley & Sons, 2008)

  13. Breuer, H.P., Laine, E.M., Piilo, J., Vacchini, B.: Colloquium: Non-Markovian dynamics in open quantum systems. Rev. Mod. Phys. 88, 021002 (2016). https://doi.org/10.1103/RevModPhys.88.021002

  14. Shrapnel, S., Costa, F., Milburn, G.: Updating the Born rule. New J. Phys. 20(5), 053010 (2018). https://doi.org/10.1088/1367-2630/aabe12

  15. Milz, S., Egloff, D., Taranto, P., Theurer, T., Plenio, M.B., Smirne, A., Huelga, S.F.: When is a non-Markovian quantum process classical? Phys. Rev. X 10, 041049 (2020). https://doi.org/10.1103/PhysRevX.10.041049

  16. Strasberg, P., Díaz, M.G.: Classical quantum stochastic processes. Phys. Rev. A 100, 022120 (2019)

  17. Taranto, P., Pollock, F.A., Milz, S., Tomamichel, M., Modi, K.: Quantum Markov order. Phys. Rev. Lett. 122, 140401 (2019). https://doi.org/10.1103/PhysRevLett.122.140401

    Article  ADS  Google Scholar 

  18. Taranto, P., Milz, S., Pollock, F.A., Modi, K.: Structure of quantum stochastic processes with finite Markov order. Phys. Rev. A 99, 042108 (2019). https://doi.org/10.1103/PhysRevA.99.042108

    Article  ADS  Google Scholar 

  19. Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Non-Markovian quantum processes: Complete framework and efficient characterization. Phys. Rev. A 97, 012127 (2018). https://doi.org/10.1103/PhysRevA.97.012127

    Article  ADS  Google Scholar 

  20. Accardi, L.: Topics in quantum probability. Phys. Rep. 77(3), 169–192 (1981). https://doi.org/10.1016/0370-1573(81)90070-3

    Article  ADS  MathSciNet  Google Scholar 

  21. Accardi, L., Frigerio, A., Lewis, J.T.: Quantum stochastic processes. Publ. Res. Inst. Mathemat. Sci. 18(1), 97–133 (1982). https://doi.org/10.2977/prims/1195184017

    Article  MathSciNet  MATH  Google Scholar 

  22. Smirne, A., Nitsche, T., Egloff, D., Barkhofen, S., De, S., Dhand, I., Silberhorn, C., Huelga, S.F., Plenio, M.B.: Experimental control of the degree of non-classicality via quantum coherence. Quantum Sci. Technol. 5(4), 04LT01 (2020). https://doi.org/10.1088/2058-9565/aba039

  23. Milz, S., Sakuldee, F., Pollock, F.A., Modi, K.: Kolmogorov extension theorem for (quantum) causal modelling and general probabilistic theories. Quantum 4, 255 (2020). https://doi.org/10.22331/q-2020-04-20-255

  24. Sakuldee, F., Milz, S., Pollock, F.A., Modi, K.: Non-Markovian quantum control as coherent stochastic trajectories. J. Phys. Mathemat. Theor 51(41), 414014 (2018). https://doi.org/10.1088/1751-8121/aabb1e

    Article  MathSciNet  MATH  Google Scholar 

  25. Degen, C.L.F., Reinhard, P.: Cappellaro, Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017). https://doi.org/10.1103/RevModPhys.89.035002

    Article  ADS  Google Scholar 

  26. Szańkowski, P., Ramon, G., Krzywda, J., Kwiatkowski, D., Cywiński, Ł.: Environmental noise spectroscopy with qubits subjected to dynamical decoupling. J. Phys. Condens. Matter 29(33), 333001 (2017). https://doi.org/10.1088/1361-648X/aa7648

  27. Facchi, P., Lidar, D.A., Pascazio, S.: Unification of dynamical decoupling and the quantum Zeno effect. Phys. Rev. A 69, 032314 (2004). https://doi.org/10.1103/PhysRevA.69.032314

    Article  ADS  Google Scholar 

  28. Fink, T., Bluhm, H.: Noise spectroscopy using correlations of single-shot qubit readout. Phys. Rev. Lett. 110, 010403 (2013). https://doi.org/10.1103/PhysRevLett.110.010403

    Article  ADS  Google Scholar 

  29. Bechtold, A., Li, F., Müller, K., Simmet, T., Ardelt, P.L., Finley, J.J., Sinitsyn, N.A.: Quantum effects in higher-order correlators of a quantum-dot spin qubit. Phys. Rev. Lett. 117, 027402 (2016). https://doi.org/10.1103/PhysRevLett.117.027402

    Article  ADS  Google Scholar 

  30. Zwick, A., Álvarez, G.A., Kurizki, G.: Maximizing information on the environment by dynamically controlled qubit probes. Phys. Rev. Appl. 5, 014007 (2016). https://doi.org/10.1103/PhysRevApplied.5.014007

  31. Sakuldee, F., Cywiński, Ł.: Spectroscopy of classical environmental noise with a qubit subjected to projective measurements. Phys. Rev. A 101, 012314 (2020). https://doi.org/10.1103/PhysRevA.101.012314

  32. Sakuldee, F., Cywiński, Ł.: Relationship between subjecting the qubit to dynamical decoupling and to a sequence of projective measurements. Phys. Rev. A 101, 042329 (2020). https://doi.org/10.1103/PhysRevA.101.042329

  33. Do, H., Lovecchio, C., Mastroserio, I., Fabbri, N., Cataliotti, F.S., Gherardini, S., Müller, M.M., Pozza, N.D., Caruso, F.: Experimental proof of quantum Zeno-assisted noise sensing. New J. Phys. 21, 113056 (2019). https://doi.org/10.1088/1367-2630/ab5740

    Article  ADS  Google Scholar 

  34. Müller, M.M., Gherardini, S., Pozza, N.D., Caruso, F.: Noise sensing via stochastic quantum Zeno. Phys. Lett. A 384, 126244 (2020). https://doi.org/10.1016/j.physleta.2020.126244

    Article  MathSciNet  MATH  Google Scholar 

  35. Thirring, W.: The Mathematical Formulation of Quantum Mechanics (Springer Vienna, 1981), pp. 9–83. https://doi.org/10.1007/978-3-7091-7523-1_2

  36. Żurek, W.H.: Decoherence, einselection, and the quantum origins of the classical 75, 715 (2003). https://doi.org/10.1103/RevModPhys.75.715

  37. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  38. Wiseman, H.M., Milburn, G.J.: Quantum Measurement and Control (Cambridge University Press, Cambridge, 2009). https://doi.org/10.1017/CBO9780511813948

  39. Białończyk, M., Jamiołkowski, A., Życzkowski, K.: Application of Shemesh theorem to quantum channels. J. Mathemat. Phys. 59(10), 102204 (2018). https://doi.org/10.1063/1.5027616

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Mendl, C.B., Wolf, M.M.: Unital quantum channels - convex structure and revivals of Birkoff’s theorem. Commun. Mathemat. Phys. 289(3), 1057–1086 (2009). https://doi.org/10.1007/s00220-009-0824-2

    Article  ADS  MATH  Google Scholar 

  41. Życzkowski, K., Kus, M.: Random unitary matrices. J. Phys. Mathemat. General 27(12), 4235–4245 (1994). https://doi.org/10.1088/0305-4470/27/12/028

    Article  ADS  MathSciNet  Google Scholar 

  42. Audenaert, K.M.R., Scheel, S.: On random unitary channels. New J. Phys. 10(2), 023011 (2008). https://doi.org/10.1088/1367-2630/10/2/023011

    Article  ADS  Google Scholar 

  43. Arias, A., Gheondea, A., Gudder, S.: Fixed points of quantum operations. J. Mathemat. Phys. 43(12), 5872–5881 (2002). https://doi.org/10.1063/1.1519669

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Heinosaari, T., Wolf, M.M.: Nondisturbing quantum measurements. J. Mathemat. Phys. 51(9), 092–201 (2010). https://doi.org/10.1063/1.3480658

    Article  MathSciNet  MATH  Google Scholar 

  45. Sakuldee, F. , Taranto, P., Milz, S.: Connecting commutativity and classicality for multi-time quantum processes. arXiv:2204.11698 (2022). https://arxiv.org/abs/2204.11698

  46. Bandyopadhyay, Boykin, Roychowdhury, Vatan.: A new proof for the existence of mutually unbiased bases. Algorithmica 34(4), 512–528 (2002). https://doi.org/10.1007/s00453-002-0980-7

  47. Bengtsson, I.: Three ways to look at mutually unbiased bases. AIP Conf. Proc. 889(1), 40–51 (2007). https://doi.org/10.1063/1.2713445

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Halliwell, J.J., Mawby, C.: Fine’s theorem for Leggett-Garg tests with an arbitrary number of measurement times. Phys. Rev. A 100, 042,103 (2019). https://doi.org/10.1103/PhysRevA.100.042103

  49. Li, C.M., Lambert, N., Chen, Y.N., Chen, G.Y., Nori, F.: Witnessing quantum coherence: from solid-state to biological systems. Scientific Reports 2(1) (2012). https://doi.org/10.1038/srep00885

  50. Schild, G., Emary, C.: Maximum violations of the quantum-witness equality. Phys. Rev. A 92, 032101 (2015). https://doi.org/10.1103/PhysRevA.92.032101

  51. Kübler, O., Zeh, H.D.: Dynamics of quantum correlations. Ann. Phys. 76, 405 (1973). https://doi.org/10.1016/0003-4916(73)90040-7

    Article  ADS  Google Scholar 

  52. Żurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003). https://doi.org/10.1103/RevModPhys.75.715

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Schlosshauer, M.: Decoherence and the Quantum-to-Classical Transition. Springer, Berlin/Heidelberg (2007)

    Google Scholar 

  54. Eisert, J., Plenio, M.B.: Quantum and classical correlations in quantum Brownian motion. Phys. Rev. Lett. 89, 137902 (2002). https://doi.org/10.1103/PhysRevLett.89.137902

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Pernice, A., Strunz, W.T.: Decoherence and the nature of system-environment correlations. Phys. Rev. A 84, 062121 (2011). https://doi.org/10.1103/PhysRevA.84.062121

    Article  ADS  Google Scholar 

  56. Roszak, K., Cywiński, Ł.: Characterization and measurement of qubit-environment-entanglement generation during pure dephasing. Phys. Rev. A 92, 032310 (2015). https://doi.org/10.1103/PhysRevA.92.032310

  57. Roszak, K.: Criteria for system-environment entanglement generation for systems of any size in pure-dephasing evolutions. Phys. Rev. A 98, 052344 (2018). https://doi.org/10.1103/PhysRevA.98.052344

    Article  ADS  Google Scholar 

  58. Roszak, K., Cywiński, Ł.: Equivalence of qubit-environment entanglement and discord generation via pure dephasing interactions and the resulting consequences. Phys. Rev. A 97, 012306 (2018). https://doi.org/10.1103/PhysRevA.97.012306

  59. Rzepkowski, B., Roszak, K.: A scheme for direct detection of qubit–environment entanglement generated during qubit pure dephasing. Quantum Info. Process. 20, 1 (2020). https://doi.org/10.1007/s11128-020-02935-8

  60. Viola, L., Lloyd, S.: Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58(4), 2733 (1998). https://doi.org/10.1103/PhysRevA.58.2733

    Article  ADS  MathSciNet  Google Scholar 

  61. Szańkowski, P., Cywiński, Ł.: Noise representations of open system dynamics. Sci. Rep. 10, 22189 (2020). https://doi.org/10.1038/s41598-020-78079-7

  62. Leggett, A.J., Garg, A.: Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks? Phys. Rev. Lett. 54, 857–860 (1985). https://doi.org/10.1103/PhysRevLett.54.857

    Article  ADS  MathSciNet  Google Scholar 

  63. Emary, C., Lambert, N., Nori, F.: Leggett-Garg inequalities. Rep. Progress Phys. 77(3), 039501 (2014). https://doi.org/10.1088/0034-4885/77/3/039501

    Article  ADS  MathSciNet  Google Scholar 

  64. Kofler, J., Brukner, Č.: Condition for macroscopic realism beyond the Leggett-Garg inequalities. Phys. Rev. A 87, 052115 (2013). https://doi.org/10.1103/PhysRevA.87.052115

  65. Uola, R., Vitagliano, G., Budroni, C.: Leggett-Garg macrorealism and the quantum nondisturbance conditions. Phys. Rev. A 100, 042117 (2019). https://doi.org/10.1103/PhysRevA.100.042117

    Article  ADS  Google Scholar 

  66. Dobrovitski, V.V., Fuchs, G.D., Falk, A.L., Santori, C., Awschalom, D.D.: Quantum control over single spins in diamond. Ann. Rev. Cond. Mat. Phys. 4, 23 (2013). https://doi.org/10.1146/annurev-conmatphys-030212-184238

    Article  ADS  Google Scholar 

  67. Rondin, L., Tetienne, J.P., Hingant, T., Roch, J.F., Maletinsky, P., Jacques, V.: Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 77, 056503 (2014). https://doi.org/10.1088/0034-4885/77/5/056503

    Article  ADS  Google Scholar 

  68. Sakuldee, F., Cywiński, Ł.: Characterization of a quasistatic environment with a qubit. Phys. Rev. A 99, 062113 (2019). https://doi.org/10.1103/PhysRevA.99.062113

Download references

Acknowledgements

We would like to thank Piotr Szańkowski for critical reading and valuable suggestions. Fruitful discussions with Simon Milz, Philip Taranto, and Dariusz Chruściński are appreciated. We acknowledge support by the Foundation for Polish Science (IRAP project, ICTQT, contract no. 2018/MAB/5, co-financed by EU within Smart Growth Operational Programme). Initial work on this topic was supported by funds from Polish National Science Center, Grant No. 2015/19/B/ST3/03152.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fattah Sakuldee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakuldee, F., Cywiński, Ł. Statistics of projective measurement on a quantum probe as a witness of noncommutativity of algebra of a probed system. Quantum Inf Process 21, 244 (2022). https://doi.org/10.1007/s11128-022-03576-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03576-9

Keywords

Navigation