Skip to main content
Log in

Semi-quantum cryptography

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Semi-quantum communication, a model introduced by Boyer et al. (Phys Rev Lett 99:140501, 2007), involves the use of fully quantum users and semi-quantum, or “classical” users. These restricted users are only allowed to interact with the quantum channel in a limited manner. Originally introduced to study the key-distribution problem, semi-quantum research has since expanded, and continues to grow, with new protocols, security proof methods, experimental implementations, and new cryptographic applications beyond key distribution. Research in the field of semi-quantum cryptography requires new insights into working with restricted protocols and, so, the tools and techniques derived in this field can translate to results in broader quantum information science. Furthermore, other questions such as the connection between quantum and classical processing, including how classical information processing can be used to counteract a quantum deficiency in a protocol, can shed light on important theoretical questions. This work surveys the history and current state of the art in semi-quantum research. We discuss the model and several protocols offering the reader insight into how protocols are constructed in this realm. We discuss security proof methods and how classical post-processing can be used to counteract users’ inability to perform certain quantum operations. Moving beyond key distribution, we survey current work in other semi-quantum cryptographic protocols and current trends. We also survey recent work done in attempting to construct practical semi-quantum systems including recent experimental results in this field. Finally, as this is still a growing field, we highlight, throughout this survey, several open problems that we feel are important to investigate in the hopes that this will spur even more research in this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Katz, Jonathan, Lindell, Yehuda: Introduction to Modern Cryptography. Chapman and Hall/CRC, Boca Raton (2014)

    MATH  Google Scholar 

  2. Stallings, William: Network Security Essentials: Applications and Standards. Pearson Education India, Bengaluru (2007)

    Google Scholar 

  3. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, vol. 175. New York (1984)

  4. Ekert, Artur K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Shor, Peter W., Preskill, John: Simple proof of security of the bb84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)

    Article  ADS  Google Scholar 

  6. Renner, Renato, Gisin, Nicolas, Kraus, Barbara: Information-theoretic security proof for quantum-key-distribution protocols. Phys. Rev. A 72, 012332 (2005)

    Article  ADS  Google Scholar 

  7. Boyer, Michel, Kenigsberg, Dan, Mor, Tal: Quantum key distribution with classical Bob. Phys. Rev. Lett. 99, 140501 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Scarani, Valerio, Bechmann-Pasquinucci, Helle, Cerf, Nicolas J., Dušek, Miloslav, Lütkenhaus, Norbert, Peev, Momtchil: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2009)

    Article  ADS  Google Scholar 

  9. Shenoy-Hejamadi, Akshata, Pathak, Anirban, Radhakrishna, Srikanth: Quantum cryptography: key distribution and beyond. Quanta 6(1), 1–47 (2017)

    Article  MathSciNet  Google Scholar 

  10. Razavi, Mohsen, Leverrier, Anthony, Ma, Xiongfeng, Qi, Bing, Yuan, Zhiliang: Quantum key distribution and beyond: introduction. J. Opt. Soc. Am. B 36(3), QKD1–QKD2 (2019)

    Article  ADS  Google Scholar 

  11. Pirandola, S., Andersen, U.L., Banchi, L., Berta, M., Bunandar, D., Colbeck, R., Englund, D., Gehring, T., Lupo, C., Ottaviani, C., et al.: Advances in quantum cryptography. arXiv preprint arXiv:1906.01645 (2019)

  12. Boyer, Michel, Gelles, Ran, Kenigsberg, Dan, Mor, Tal: Semiquantum key distribution. Phys. Rev. A 79, 032341 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Jian, Wang, Sheng, Zhang, Quan, Zhang, Chao-Jing, Tang: Semiquantum key distribution using entangled states. Chin. Phys. Lett. 28(10), 100301 (2011)

    Article  Google Scholar 

  14. Sun, Z., Du, R., Long, D.: Semi-quantum key distribution protocol using bell state. arXiv preprint arXiv:1106.2910 (2011)

  15. Zou, Xiangfu, Qiu, Daowen, Li, Lvzhou, Lihua, Wu, Li, Lvjun: Semiquantum-key distribution using less than four quantum states. Phys. Rev. A 79, 052312 (2009)

    Article  ADS  Google Scholar 

  16. Krawec, Walter O.: Restricted attacks on semi-quantum key distribution protocols. Quantum Inf. Process. 13(11), 2417–2436 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Fung, Chi-Hang Fred, Lo, Hoi-Kwong: Security proof of a three-state quantum-key-distribution protocol without rotational symmetry. Phys. Rev. A 74, 042342 (2006)

    Article  ADS  Google Scholar 

  18. Branciard, Cyril, Gisin, Nicolas, Lutkenhaus, Norbert, Scarani, Valerio: Zero-error attacks and detection statistics in the coherent one-way protocol for quantum cryptography. Quantum Inf. Comput. 7(7), 639–664 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Lucamarini, Marco, Di Giuseppe, Giovanni, Tamaki, Kiyoshi: Robust unconditionally secure quantum key distribution with two nonorthogonal and uninformative states. Phys. Rev. A 80(3), 032327 (2009)

    Article  ADS  Google Scholar 

  20. Zhang, W., Qiu, D.: A single-state semi-quantum key distribution protocol and its security proof. arXiv preprint arXiv:1612.03087 (2016)

  21. Hua, Lu, Cai, Qing-Yu.: Quantum key distribution with classical Alice. Int. J. Quantum Inf. 6(06), 1195–1202 (2008)

    Article  MATH  Google Scholar 

  22. Sun, Zhi-Wei, Rui-Gang, Du, Long, Dong-Yang: Quantum key distribution with limited classical Bob. Int. J. Quantum Inf. 11(01), 1350005 (2013)

    Article  MathSciNet  Google Scholar 

  23. Lin, Po-Hua, Hwang, Tzonelih, Tsai, Chia-Wei: Double cnot attack on “quantum key distribution with limited classical Bob”. Int. J. Quantum Inf. 17(02), 1975001 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Krawec, W.O., Geiss, E.P.: Semi-quantum key distribution with limited measurement capabilities. In: 2018 International Symposium on Information Theory and its Applications (ISITA), pp. 462–466. IEEE (2018)

  25. Gagliano, A., Krawec, W.O., Iqbal, H.: From classical to semi-quantum secure communication. In: 2019 IEEE International Symposium on Information Theory (ISIT), pp. 1707–1711. IEEE (2019)

  26. Zou, Xiangfu, Qiu, Daowen, Zhang, Shengyu, Mateus, Paulo: Semiquantum key distribution without invoking the classical party’s measurement capability. Quantum Inf. Process. 14(8), 2981–2996 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Li, Qin, Chan, Wai Hong, Zhang, Shengyu: Semiquantum key distribution with secure delegated quantum computation. Sci. Rep. 6, 19898 (2016)

    Article  ADS  Google Scholar 

  28. Kun-Fei, Yu., Yang, Chun-Wei, Liao, Ci-Hong, Hwang, Tzonelih: Authenticated semi-quantum key distribution protocol using Bell states. Quantum Inf. Process. 13(6), 1457–1465 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Li, Chuan-Ming, Kun-Fei, Yu., Kao, Shih-Hung, Hwang, Tzonelih: Authenticated semi-quantum key distributions without classical channel. Quantum Inf. Process. 15(7), 2881–2893 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Meslouhi, A., Hassouni, Yassine: Cryptanalysis on authenticated semi-quantum key distribution protocol using Bell states. Quantum Inf. Process. 16(1), 18 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Amer, Omar, Krawec, Walter O.: Semiquantum key distribution with high quantum noise tolerance. Phys. Rev. A 100(2), 022319 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  32. Liu, W., Zhou, H.: A new semi-quantum key distribution protocol with high efficiency. In: 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), pp. 2424–2427. IEEE (2018)

  33. Wang, Ming-Ming, Gong, Lin-Ming, Shao, Lian-He: Efficient semiquantum key distribution without entanglement. Quantum Inf. Process. 18(9), 260 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  34. Lo, Hoi-Kwong, Chau, Hoi-Fung, Ardehali, M.: Efficient quantum key distribution scheme and a proof of its unconditional security. J. Cryptol. 18(2), 133–165 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang, Ming-Hui, Li, Hui-Fang, Peng, Jin-Ye, Feng, Xiao-Yi: Fault-tolerant semiquantum key distribution over a collective-dephasing noise channel. Int. J. Theor. Phys. 56(8), 2659–2670 (2017)

    Article  MATH  Google Scholar 

  36. Tsai, Chih-Lun, Hwang, Tzonelih: Semi-quantum key distribution robust against combined collective noise. Int. J. Theor. Phys. 57(11), 3410–3418 (2018)

    Article  MATH  Google Scholar 

  37. Tsai, C.-W., Yang, C.-W.: Cryptanalysis and improvement of the semi-quantum key distribution robust against combined collective noise. Int. J. Theor. Phys. 58, 1–7 (2019)

    Article  MATH  Google Scholar 

  38. Vlachou, Chrysoula, Krawec, Walter, Mateus, Paulo, Paunković, Nikola, Souto, André: Quantum key distribution with quantum walks. Quantum Inf. Process. 17(11), 288 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Iqbal, H., Krawec, W.O.: High-dimensional semi-quantum cryptography. arXiv preprint arXiv:1907.11340 (2019)

  40. Bechmann-Pasquinucci, H., Tittel, Wolfgang: Quantum cryptography using larger alphabets. Phys. Rev. A 61(6), 062308 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  41. Chau, H.F.: Quantum key distribution using qudits that each encode one bit of raw key. Phys. Rev. A 92(6), 062324 (2015)

    Article  ADS  Google Scholar 

  42. Sasaki, Toshihiko, Yamamoto, Yoshihisa, Koashi, Masato: Practical quantum key distribution protocol without monitoring signal disturbance. Nature 509(7501), 475 (2014)

    Article  ADS  Google Scholar 

  43. Yin, Zhen-Qiang, Wang, Shuang, Chen, Wei, Han, Yun-Guang, Wang, Rong, Guo, Guang-Can, Han, Zheng-Fu: Improved security bound for the round-robin-differential-phase-shift quantum key distribution. Nat. Commun. 9(1), 457 (2018)

    Article  ADS  Google Scholar 

  44. Wang, Rong, Yin, Zhen-Qiang, Cui, Chao-han, Wang, Shuang, Chen, Wei, Guo, Guang-Can, Han, Zheng-Fu: Security proof for single-photon round-robin differential-quadrature-phase-shift quantum key distribution. Phys. Rev. A 98(6), 062331 (2018)

    Article  ADS  Google Scholar 

  45. Kempe, Julia: Quantum random walks: an introductory overview. Contemp. Phys. 44(4), 307–327 (2003)

    Article  ADS  Google Scholar 

  46. Venegas-Andraca, Salvador Elías: Quantum walks: a comprehensive review. Quantum Inf. Process. 11(5), 1015–1106 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  47. Maitra, Arpita, Paul, Goutam: Eavesdropping in semiquantum key distribution protocol. Inf. Process. Lett. 113(12), 418–422 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Devetak, Igor, Winter, Andreas: Distillation of secret key and entanglement from quantum states. Proc. R. Soc. A: Math., Phys. Eng. Sci. 461(2053), 207–235 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Miyadera, Takayuki: Relation between information and disturbance in quantum key distribution protocol with classical Alice. Int. J. Quantum Inf. 9(06), 1427–1435 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  50. Fuchs, Christopher A., Gisin, Nicolas, Griffiths, Robert B., Niu, Chi-Sheng, Peres, Asher: Optimal eavesdropping in quantum cryptography. i. Information bound and optimal strategy. Phys. Rev. A 56(2), 1163 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  51. Krawec, W.O.: Key-rate bound of a semi-quantum protocol using an entropic uncertainty relation. In: 2018 IEEE International Symposium on Information Theory (ISIT), pp. 2669–2673. IEEE (2018)

  52. Krawec, W.O.: Security proof of a semi-quantum key distribution protocol. In: 2015 IEEE International Symposium on Information Theory (ISIT), pp. 686–690. IEEE (2015)

  53. Alicki, Robert, Fannes, Mark: Continuity of quantum conditional information. J. Phys. A: Math. General 37(5), L55 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Audenaert, Koenraad M.R.: A sharp continuity estimate for the von Neumann entropy. J. Phys. A: Math. Theor. 40(28), 8127 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Winter, Andreas: Tight uniform continuity bounds for quantum entropies: conditional entropy, relative entropy distance and energy constraints. Commun. Math. Phys. 347(1), 291–313 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Berta, Mario, Christandl, Matthias, Colbeck, Roger, Renes, Joseph M., Renner, Renato: The uncertainty principle in the presence of quantum memory. Nat. Phys. 6(9), 659–662 (2010)

    Article  Google Scholar 

  57. Coles, Patrick J., Berta, Mario, Tomamichel, Marco, Wehner, Stephanie: Entropic uncertainty relations and their applications. Rev. Mod. Phys. 89, 015002 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  58. Bialynicki-Birula, I., Rudnicki, Ł.: Entropic uncertainty relations in quantum physics. In: Statistical Complexity, pp. 1–34. Springer, Berlin (2011)

  59. Wehner, Stephanie, Winter, Andreas: Entropic uncertainty relations—a survey. New J. Phys. 12(2), 025009 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Krawec, Walter O.: Quantum key distribution with mismatched measurements over arbitrary channels. Quantum Inf. Comput. 17(3 and 4), 209–241 (2017)

    MathSciNet  Google Scholar 

  61. Beaudry, Normand J., Lucamarini, Marco, Mancini, Stefano, Renner, Renato: Security of two-way quantum key distribution. Phys. Rev. A 88(6), 062302 (2013)

    Article  ADS  Google Scholar 

  62. Lucamarini, Marco, Mancini, Stefano: Quantum key distribution using a two-way quantum channel. Theor. Comput. Sci. 560, 46–61 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  63. Krawec, W.O.: Semi-Quantum Key Distribution: Protocols, Security Analysis, and New Models. PhD thesis, Stevens Institute of Technology (2015)

  64. Krawec, Walter O.: Security of a semi-quantum protocol where reflections contribute to the secret key. Quantum Inf. Process. 15(5), 2067–2090 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Barnett, Stephen M., Huttner, Bruno, Phoenix, Simon J.D.: Eavesdropping strategies and rejected-data protocols in quantum cryptography. J. Mod. Opt. 40(12), 2501–2513 (1993)

    Article  ADS  Google Scholar 

  66. Watanabe, Shun, Matsumoto, Ryutaroh, Uyematsu, Tomohiko: Tomography increases key rates of quantum-key-distribution protocols. Phys. Rev. A 78(4), 042316 (2008)

    Article  ADS  Google Scholar 

  67. Matsumoto, Ryutaroh, Watanabe, Shun: Key rate available from mismatched measurements in the bb84 protocol and the uncertainty principle. IEICE Trans. Fundam. Electron., Commun. Comput. Sci. 91(10), 2870–2873 (2008)

    Article  ADS  Google Scholar 

  68. Matsumoto, Ryutaroh, Watanabe, Shun: Narrow basis angle doubles secret key in the bb84 protocol. J. Phys. A: Math. Theor. 43(14), 145302 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. Tamaki, Kiyoshi, Curty, Marcos, Kato, Go, Lo, Hoi-Kwong, Azuma, Koji: Loss-tolerant quantum cryptography with imperfect sources. Phys. Rev. A 90(5), 052314 (2014)

    Article  ADS  Google Scholar 

  70. Krawec, W.O.: Asymptotic analysis of a three state quantum cryptographic protocol. In: IEEE International Symposium on Information Theory, ISIT 2016, Barcelona, July 10–15, 2016, pp. 2489–2493 (2016)

  71. Zhang, Wei, Qiu, Daowen, Mateus, Paulo: Security of a single-state semi-quantum key distribution protocol. Quantum Inf. Process. 17(6), 135 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. Xian-Zhou, Zhang, Wei-Gui, Gong, Yong-Gang, Tan, Zhen-Zhong, Ren, Xiao-Tian, Guo: Quantum key distribution series network protocol with m-classical Bobs. Chin. Phys. B 18(6), 2143 (2009)

    Article  ADS  Google Scholar 

  73. Zhu, Kong-Ni, Zhou, Nan-Run, Wang, Yun-Qian, Wen, Xiao-Jun: Semi-quantum key distribution protocols with GHZ states. Int. J. Theor. Phys. 57(12), 3621–3631 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  74. Zhou, N.-R., Zhu, K.-N., Zou, X.-F.: Multi-party semi-quantum key distribution protocol with four-particle cluster states. Annalen der Physik 531, 1800520 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  75. Raussendorf, Robert, Briegel, Hans J.: A one-way quantum computer. Phys. Rev. Lett. 86(22), 5188 (2001)

    Article  ADS  Google Scholar 

  76. Krawec, Walter O.: Mediated semiquantum key distribution. Phys. Rev. A 91(3), 032323 (2015)

    Article  ADS  Google Scholar 

  77. Krawec, Walter O.: An improved asymptotic key rate bound for a mediated semi-quantum key distribution protocol. Quantum Inf. Comput. 16(9 and 10), 813–834 (2016)

    MathSciNet  Google Scholar 

  78. Krawec, W.O.: Multi-mediated semi-quantum key distribution. In: 2019 IEEE Globecom Workshops (GC Wkshps) (2019, to appear)

  79. Liu, Zhi-Rou, Hwang, Tzonelih: Mediated semi-quantum key distribution without invoking quantum measurement. Annalen der Physik 530(4), 1700206 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  80. Lin, P.-H., Tsai, C.-W., Hwang, T.: Mediated semi-quantum key distribution using single photons. Annalen der Physik 531, 1800347 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  81. Massa, F., Yadav, P., Moqanaki, A., Krawec, W.O., Mateus, P., Paunković, N., Souto, A., Walther, P.: Experimental quantum cryptography with classical users. arXiv preprint arXiv:1908.01780 (2019)

  82. Shamir, Adi: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  83. Beimel, A.: Secret-sharing schemes: a survey. In: International Conference on Coding and Cryptology, pp. 11–46. Springer, Berlin (2011)

  84. Hillery, Mark, Bužek, Vladimír, Berthiaume, André: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  85. Karlsson, Anders, Koashi, Masato, Imoto, Nobuyuki: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162 (1999)

    Article  ADS  Google Scholar 

  86. Gottesman, Daniel: Theory of quantum secret sharing. Phys. Rev. A 61(4), 042311 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  87. Li, Qin, Chan, Wai Hong, Long, Dong-Yang: Semiquantum secret sharing using entangled states. Phys. Rev. A 82(2), 022303 (2010)

    Article  ADS  Google Scholar 

  88. Lin, Jason, Yang, Chun-Wei, Tsai, Chia-Wei, Hwang, Tzonelih: Intercept-resend attacks on semi-quantum secret sharing and the improvements. Int. J. Theor. Phys. 52(1), 156–162 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  89. Wang, Jian, Zhang, Sheng, Zhang, Quan, Tang, Chao-Jing: Semiquantum secret sharing using two-particle entangled state. In. J. Quantum Inf. 10(05), 1250050 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  90. Li, Lvzhou, Qiu, Daowen, Mateus, Paulo: Quantum secret sharing with classical Bobs. J. Phys. A: Math. Theor. 46(4), 045304 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  91. Xie, Chen, Li, Lvzhou, Qiu, Daowen: A novel semi-quantum secret sharing scheme of specific bits. Int. J. Theor. Phys. 54(10), 3819–3824 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  92. Yin, Aihan, Fangbo, Fu: Eavesdropping on semi-quantum secret sharing scheme of specific bits. Int. J. Theor. Phys. 55(9), 4027–4035 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  93. Gao, Xiang, Zhang, Shibin, Chang, Yan: Cryptanalysis and improvement of the semi-quantum secret sharing protocol. Int. J. Theor. Phys. 56(8), 2512–2520 (2017)

    Article  MATH  Google Scholar 

  94. Xiang, Yi, Liu, Jun, Bai, Ming-qiang, Yang, Xue, Mo, Zhi-wen: Limited resource semi-quantum secret sharing based on multi-level systems. Int. J. Theor. Phys. 58(9), 2883–2892 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  95. Ye, Chong-Qiang, Ye, Tian-Yu.: Circular semi-quantum secret sharing using single particles. Commun. Theor. Phys. 70(6), 661 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  96. Li, Zhulin, Li, Qin, Liu, Chengdong, Peng, Yu., Chan, Wai Hong, Li, Lvzhou: Limited resource semiquantum secret sharing. Quantum Inf. Process. 17(10), 285 (2018)

    Article  ADS  MATH  Google Scholar 

  97. Chong-Qiang, Y., Tian-Yu, Y., De, H., Zhi-Gang, G.: Multiparty semi-quantum secret sharing with d-level single-particle states. Int. J. Theor. Phys. 58, 1–18 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  98. Tsai, Chia-Wei, Yang, Chun-Wei, Lee, Narn-Yih: Semi-quantum secret sharing protocol using w-state. Mod. Phys. Lett. A 34(27), 1950213 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  99. Kun-Fei, Yu., Jun, Gu, Hwang, Tzonelih, Gope, Prosanta: Multi-party semi-quantum key distribution-convertible multi-party semi-quantum secret sharing. Quantum Inf. Process. 16(8), 194 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  100. Yin, Aihan, Wang, Zefan, Fangbo, Fu: A novel semi-quantum secret sharing scheme based on Bell states. Mod. Phys. Lett. B 31(13), 1750150 (2017)

    Article  ADS  Google Scholar 

  101. Gao, Gan, Wang, Yue, Wang, Dong: Cryptanalysis of a semi-quantum secret sharing scheme based on Bell states. Mod. Phys. Lett. B 32(09), 1850117 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  102. Gao, Gan, Wang, Yue, Wang, Dong: Multiparty semiquantum secret sharing based on rearranging orders of qubits. Mod. Phys. Lett. B 30(10), 1650130 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  103. Yin, Ai Han, Tong, Yan: A novel semi-quantum secret sharing scheme using entangled states. Mod. Phys. Lett. B 32(22), 1850256 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  104. He, Qijian, Yang, Wei, Chen, Bingren, Huang, Liusheng: Cryptanalysis and improvement of the novel semi-quantum secret sharing scheme using entangled states. Mod. Phys. Lett. B 33(04), 1950045 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  105. Cao, G., Chen, C., Jiang, M.: A scalable and flexible multi-user semi-quantum secret sharing. In: Proceedings of the 2nd International Conference on Telecommunications and Communication Engineering, pp. 28–32. ACM (2018)

  106. Nie, Yi-you, Li, Yuan-hua, Wang, Zi-sheng: Semi-quantum information splitting using GHZ-type states. Quantum Inf. Process. 12(1), 437–448 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  107. Long, Gui-Lu, Liu, Xiao-Shu: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)

    Article  ADS  Google Scholar 

  108. Boström, Kim, Felbinger, Timo: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187902 (2002)

    Article  ADS  Google Scholar 

  109. Deng, Fu-Guo, Liu, Xiao-Shu: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)

    Article  ADS  Google Scholar 

  110. Long, G.: Quantum secure direct communication: principles, current status, perspectives. In: 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), pp. 1–5 (2017)

  111. Deng, Fu-Guo, Long, Gui Lu: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)

    Article  ADS  Google Scholar 

  112. Zou, XiangFu, Qiu, DaoWen: Three-step semiquantum secure direct communication protocol. Sci. China Phys., Mech. Astron. 57(9), 1696–1702 (2014)

    Article  ADS  Google Scholar 

  113. Jun, Gu, Lin, Po-hua, Hwang, Tzonelih: Double c-not attack and counterattack on ‘three-step semi-quantum secure direct communication protocol’. Quantum Inf. Process. 17(7), 182 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  114. Xie, Chen, Li, Lvzhou, Situ, Haozhen, He, Jianhao: Semi-quantum secure direct communication scheme based on Bell states. Int. J. Theor. Phys. 57(6), 1881–1887 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  115. Zhang, Ming-Hui, Li, Hui-Fang, Xia, Zhao-Qiang, Feng, Xiao-Yi, Peng, Jin-Ye: Semiquantum secure direct communication using EPR pairs. Quantum Inf. Process. 16(5), 117 (2017)

    Article  ADS  MATH  Google Scholar 

  116. Yan, LiLi, Sun, YuHua, Chang, Yan, Zhang, ShiBin, Wan, GuoGen, Sheng, ZhiWei: Semi-quantum protocol for deterministic secure quantum communication using Bell states. Quantum Inf. Process. 17(11), 315 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  117. Sun, Yuhua, Yan, Lili, Chang, Yan, Zhang, Shibin, Shao, Tingting, Zhang, Yan: Two semi-quantum secure direct communication protocols based on bell states. Mod. Phys. Lett. A 34(01), 1950004 (2019)

    Article  ADS  Google Scholar 

  118. Luo, Yi-Ping, Hwang, Tzonelih: Authenticated semi-quantum direct communication protocols using Bell states. Quantum Inf. Process. 15(2), 947–958 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  119. Almousa, S., Barbeau, M.: Delay and reflection attacks in authenticated semi-quantum direct communications. In: 2016 IEEE Globecom Workshops (GC Wkshps), pp. 1–7. IEEE (2016)

  120. Lu, H., Barbeau, M., Nayak, A.: Economic no-key semi-quantum direct communication protocol. In: 2017 IEEE Globecom Workshops (GC Wkshps), pp. 1–7. IEEE (2017)

  121. Haoye, Lu, Barbeau, Michel, Nayak, Amiya: Keyless semi-quantum point-to-point communication protocol with low resource requirements. Sci. Rep. 9(1), 64 (2019)

    Article  ADS  Google Scholar 

  122. Wang, M.-M., Liu, J.-L., Gong, L.-M.: Semiquantum secure direct communication with authentication based on single-photons. Int. J. Quantum Inf. 17, 1950024 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  123. Tao, Z., Chang, Y., Zhang, S., Dai, J., Li, X.: Two semi-quantum direct communication protocols with mutual authentication based on Bell states. Int. J. Theor. Phys. 58, 1–8 (2019)

    Article  MATH  Google Scholar 

  124. Zhang, Z.-J., Man, Z.-X.: Secure direct bidirectional communication protocol using the Einstein–Podolsky–Rosen pair block. arXiv preprint arXiv:quant-ph/0403215 (2004)

  125. Nguyen, Ba An: Quantum dialogue. Phys. Lett. A 328(1), 6–10 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  126. Shukla, Chitra, Thapliyal, Kishore, Pathak, Anirban: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quantum Inf. Process. 16(12), 295 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  127. Ye, Tian-Yu., Ye, Chong-Qiang: Semi-quantum dialogue based on single photons. Int. J. Theor. Phys. 57(5), 1440–1454 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  128. Liu, Lin, Xiao, Min, Song, Xiuli: Authenticated semiquantum dialogue with secure delegated quantum computation over a collective noise channel. Quantum Inf. Process. 17(12), 342 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  129. Zhou, Nanrun, Zeng, Guihua, Xiong, Jin: Quantum key agreement protocol. Electron. Lett. 40(18), 1149–1150 (2004)

    Article  Google Scholar 

  130. Chong, Song-Kong, Hwang, Tzonelih: Quantum key agreement protocol based on bb84. Opt. Commun. 283(6), 1192–1195 (2010)

    Article  ADS  Google Scholar 

  131. Shukla, Chitra, Alam, Nasir, Pathak, Anirban: Protocols of quantum key agreement solely using bell states and Bell measurement. Quantum Inf. Process. 13(11), 2391–2405 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  132. Liu, Wen-Jie, Chen, Zhen-Yu., Ji, Sai, Wang, Hai-Bin, Zhang, Jun: Multi-party semi-quantum key agreement with delegating quantum computation. Int. J. Theor. Phys. 56(10), 3164–3174 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  133. Yan, L.-L., Zhang, S.-B., Chang, Y., Sheng, Z.-W., Yang, F.: Mutual semi-quantum key agreement protocol using Bell states. Mod. Phys. Lett. A 34, 1950294 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  134. Yan, L., Zhang, S., Chang, Y., Sheng, Z., Sun, Y.: Semi-quantum key agreement and private comparison protocols using Bell states. Int. J. Theor. Phys. 58, 1–11 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  135. Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982), pp. 160–164. IEEE (1982)

  136. Lindell, Y.: Secure multiparty computation for privacy preserving data mining. In: Encyclopedia of Data Warehousing and Mining, pp. 1005–1009. IGI Global (2005)

  137. Chen, Xiu-Bo, Gang, Xu, Niu, Xin-Xin, Wen, Qiao-Yan, Yang, Yi-Xian: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283(7), 1561–1565 (2010)

    Article  ADS  Google Scholar 

  138. Liu, Wen, Wang, Yong-Bin, Jiang, Zheng-Tao: An efficient protocol for the quantum private comparison of equality with w state. Opt. Commun. 284(12), 3160–3163 (2011)

    Article  ADS  Google Scholar 

  139. Liu, Wen, Wang, Yong-Bin, Jiang, Zheng-Tao, Cao, Yi-Zhen: A protocol for the quantum private comparison of equality with \(\chi \)-type state. Int. J. Theor. Phys. 51(1), 69–77 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  140. Liu, Wenjie, Liu, Chao, Wang, Haibin, Jia, Tingting: Quantum private comparison: a review. IETE Tech. Rev. 30(5), 439–445 (2013)

    Article  Google Scholar 

  141. Lo, Hoi-Kwong: Insecurity of quantum secure computations. Phys. Rev. A 56(2), 1154 (1997)

    Article  ADS  Google Scholar 

  142. Thapliyal, Kishore, Sharma, Rishi Dutt, Pathak, Anirban: Orthogonal-state-based and semi-quantum protocols for quantum private comparison in noisy environment. Int. J. Quantum Inf. 16(05), 1850047 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  143. Chou, W.-H., Hwang, T., Gu, J.: Semi-quantum private comparison protocol under an almost-dishonest third party. arXiv preprint arXiv:1607.07961 (2016)

  144. Yan-Feng, Lang: Semi-quantum private comparison using single photons. Int. J. Theor. Phys. 57(10), 3048–3055 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  145. Lin, Po-Hua, Hwang, Tzonelih, Tsai, Chia-Wei: Efficient semi-quantum private comparison using single photons. Quantum Inf. Process. 18(7), 207 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  146. Ye, Tian-Yu., Ye, Chong-Qiang: Measure-resend semi-quantum private comparison without entanglement. Int. J. Theor. Phys. 57(12), 3819–3834 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  147. Wen, Xiao-Jun, Zhao, Xing-Qiang, Gong, Li-Hua, Zhou, Nan-Run: A semi-quantum authentication protocol for message and identity. Laser Phys. Lett. 16(7), 075206 (2019)

    Article  ADS  Google Scholar 

  148. Zhou, Nan-Run, Zhu, Kong-Ni, Bi, Wei, Gong, Li-Hua: Semi-quantum identification. Quantum Inf. Process. 18(6), 197 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  149. Xiao, Min, Zhang, Di-Fang: Practical quantum private query with classical participants. Chin. Phys. Lett. 36(3), 030301 (2019)

    Article  ADS  Google Scholar 

  150. He, Jinjun, Li, Qin, Wu, Chunhui, Chan, Wai Hong, Zhang, Shengyu: Measurement-device-independent semiquantum key distribution. Int. J. Quantum Inf. 16(02), 1850012 (2018)

    Article  MATH  Google Scholar 

  151. Yang, Yu-Guang, Yang, Rui, Lei, He, Shi, Wei-Min, Zhou, Yi-Hua: Quantum oblivious transfer with relaxed constraints on the receiver. Quantum Inf. Process. 14(8), 3031–3040 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  152. Zhao, X.-Q., Chen, H.-Y., Wang, Y.-Q., Zhou, N.-R.: Semi-quantum bi-signature scheme based on w states. Int. J. Theor. Phys. 58, 1–13 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  153. Damgård, Ivan B., Fehr, Serge, Salvail, Louis, Schaffner, Christian: Cryptography in the bounded-quantum-storage model. SIAM J. Comput. 37(6), 1865–1890 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  154. Damgård, I.B., Fehr, S., Salvail, L., Schaffner, C.: Secure identification and qkd in the bounded-quantum-storage model. In: Annual International Cryptology Conference, pp. 342–359. Springer, Berlin (2007)

  155. Wehner, Stephanie, Schaffner, Christian, Terhal, Barbara M.: Cryptography from noisy storage. Phys. Rev. Lett. 100(22), 220502 (2008)

    Article  ADS  Google Scholar 

  156. Konig, Robert, Wehner, Stephanie, Wullschleger, Jürg: Unconditional security from noisy quantum storage. IEEE Trans. Inf. Theory 58(3), 1962–1984 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  157. Tan, Yong-gang, Hua, Lu, Cai, Qing-yu: Comment on “quantum key distribution with classical Bob”. Phys. Rev. Lett. 102(9), 098901 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  158. Boyer, Michel, Kenigsberg, Dan, Mor, Tal: Boyer, Kenigsberg, and Mor reply. Phys. Rev. Lett. 102(9), 098902 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  159. Yang, Yu-Guang, Sun, Si-Jia, Zhao, Qian-Qian: Trojan–Horse attacks on quantum key distribution with classical Bob. Quantum Inf. Process. 14(2), 681–686 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  160. Pirandola, Stefano, Mancini, Stefano, Lloyd, Seth, Braunstein, Samuel L.: Continuous-variable quantum cryptography using two-way quantum communication. Nat. Phys. 4(9), 726 (2008)

    Article  Google Scholar 

  161. Ottaviani, Carlo, Pirandola, Stefano: General immunity and superadditivity of two-way gaussian quantum cryptography. Sci. Rep. 6, 22225 (2016)

    Article  ADS  Google Scholar 

  162. Weedbrook, Christian, Ottaviani, Carlo, Pirandola, Stefano: Two-way quantum cryptography at different wavelengths. Phys. Rev. A 89(1), 012309 (2014)

    Article  ADS  Google Scholar 

  163. Ottaviani, Carlo, Mancini, Stefano, Pirandola, Stefano: Two-way gaussian quantum cryptography against coherent attacks in direct reconciliation. Phys. Rev. A 92(6), 062323 (2015)

    Article  ADS  Google Scholar 

  164. Zhuang, Quntao, Zhang, Zheshen, Lütkenhaus, Norbert, Shapiro, Jeffrey H.: Security-proof framework for two-way Gaussian quantum-key-distribution protocols. Phys. Rev. A 98(3), 032332 (2018)

    Article  ADS  Google Scholar 

  165. Ghorai, Shouvik, Diamanti, Eleni, Leverrier, Anthony: Composable security of two-way continuous-variable quantum key distribution without active symmetrization. Phys. Rev. A 99(1), 012311 (2019)

    Article  ADS  Google Scholar 

  166. Zhuang, Quntao, Zhang, Zheshen, Dove, Justin, Wong, Franco N.C., Shapiro, Jeffrey H.: Floodlight quantum key distribution: a practical route to gigabit-per-second secret-key rates. Phys. Rev. A 94, 012322 (2016)

    Article  ADS  Google Scholar 

  167. Boyer, Michel, Katz, Matty, Liss, Rotem, Mor, Tal: Experimentally feasible protocol for semiquantum key distribution. Phys. Rev. A 96(6), 062335 (2017)

    Article  ADS  Google Scholar 

  168. Krawec, W.O.: Practical security of semi-quantum key distribution. In: Quantum Information Science, Sensing, and Computation X, vol. 10660, p. 1066009. International Society for Optics and Photonics (2018)

  169. Gurevich, P.: Experimental Quantum Key Distribution with Classical Alice. Technion-Israel Institute of Technology, Faculty of Computer Science (2012)

  170. Boyer, Michel, Liss, Rotem, Mor, Tal: Attacks against a simplified experimentally feasible semiquantum key distribution protocol. Entropy 20(7), 536 (2018)

    Article  ADS  Google Scholar 

  171. Tamaki, Kiyoshi, Koashi, Masato, Imoto, Nobuyuki: Security of the Bennett 1992 quantum-key distribution protocol against individual attack over a realistic channel. Phys. Rev. A 67(3), 032310 (2003)

    Article  ADS  Google Scholar 

  172. Temporao, G.P.: Passive switching scheme for two-way quantum key distribution setups. Electron. Lett. 46(7), 512–513 (2010)

    Article  Google Scholar 

Download references

Funding

Funding was provided by the National Science Foundation, Directorate for Computer and Information Science and Engineering (Grant No. 1812070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter O. Krawec.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, H., Krawec, W.O. Semi-quantum cryptography. Quantum Inf Process 19, 97 (2020). https://doi.org/10.1007/s11128-020-2595-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-2595-9

Keywords

Navigation