Skip to main content
Log in

Coupled quantum Otto heat engine and refrigerator with inner friction

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate two coupled spins 1/2 in a magnetic field as the working substance of the quantum Otto cycle. In the quantum adiabatic strokes, finite-time parametric transformations are employed either in the coupling strength or in the magnetic field. The operation regimes, where the mode of the cycle is a refrigerator or a heat engine, are explored. The role of the total allocated time to the quantum adiabatic stages on the performance of the quantum Otto refrigerator and the heat engine is investigated in detail. The finite-time adiabatic transformations are found to increase the Shannon entropy which is quantum in origin. The effect known as the inner friction is found to negatively effect the performances of the quantum heat engine and the refrigerator. The strong frictional losses are also found to induce inactive operation regimes where the mode of the cycle is neither a refrigerator nor a heat engine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Scovil, H.E.D., Schulz-DuBois, E.O.: Three-level masers as heat engines. Phys. Rev. Lett. 2(6), 262 (1959)

    Article  ADS  Google Scholar 

  2. Kieu, T.D.: The second law, Maxwell’s Demon, and work derivable from quantum heat engines. Phys. Rev. Lett. 93(14), 140403 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  3. Thomas, G., Johal, R.S.: Coupled quantum Otto cycle. Phys. Rev. E 83(3), 031135 (2011)

    Article  ADS  Google Scholar 

  4. Altintas, F., Hardal, A.Ü.C., Müstecaplıoğlu, Ö.E.: Quantum correlated heat engine with spin squeezing. Phys. Rev. E 90(3), 032102 (2014)

    Article  ADS  Google Scholar 

  5. Abah, O., Lutz, E.: Optimal performance of a quantum Otto refrigerator. EPL 113(6), 60002 (2016)

    Article  ADS  Google Scholar 

  6. Quan, H.T., Zhang, P., Sun, C.P.: Quantum heat engine with multilevel quantum systems. Phys. Rev. E 72(5), 056110 (2005)

    Article  ADS  Google Scholar 

  7. Henrich, M.J., Mahler, G., Michel, M.: Driven spin systems as quantum thermodynamic machines: fundamental limits. Phys. Rev. E 75(5), 051118 (2007)

    Article  ADS  Google Scholar 

  8. Zhang, T., Liu, W.T., Chen, P.X., Li, C.Z.: Four-level entangled quantum heat engines. Phys. Rev. A 75(6), 062102 (2007)

    Article  ADS  Google Scholar 

  9. Quan, H.T., Liu, Y.X., Sun, C.P., Nori, F.: Quantum thermodynamic cycles and quantum heat engines. Phys. Rev. E 76(3), 031105 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  10. Quan, H.T.: Quantum thermodynamic cycles and quantum heat engines. II. Phys. Rev. E 79(4), 041129 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  11. Lin, S., Song, Z.: Non-Hermitian heat engine with all-quantum-adiabatic-process cycle. J. Phys. A Math. Theor. 49(47), 475301 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  12. Tonner, F., Mahler, G.: Autonomous quantum thermodynamic machines. Phys. Rev. E 72(6), 066118 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  13. Türkpençe, D., Müstecaplıoğlu, Ö.E.: Quantum fuel with multilevel atomic coherence for ultrahigh specific work in a photonic Carnot engine. Phys. Rev. E 93(1), 012145 (2016)

    Article  ADS  Google Scholar 

  14. Çakmak, S., Türkpençe, D., Altintas, F.: Special coupled quantum Otto and Carnot cycles. Eur. Phys. J. Plus 132(12), 554 (2017)

    Article  Google Scholar 

  15. Türkpençe, D., Altintas, F., Paternostro, M., Müstecaplıoğlu, Ö.E.: A photonic Carnot engine powered by a spin-star network. EPL 117(5), 50002 (2017)

    Article  ADS  Google Scholar 

  16. Feldmann, T., Kosloff, R.: Minimal temperature of quantum refrigerators. EPL (Europhys. Lett.) 89(2), 20004 (2010)

    Article  ADS  Google Scholar 

  17. Altintas, F.: Comparison of the coupled quantum Carnot and Otto cycles. Phys. A Stat. Mech. Appl. 523, 40 (2019)

    Article  MathSciNet  Google Scholar 

  18. Hewgill, A., Ferraro, A., De Chiara, G.: Quantum correlations and thermodynamic performances of two-qubit engines with local and common baths. Phys. Rev. A 98(4), 042102 (2018)

    Article  ADS  Google Scholar 

  19. Chand, S., Biswas, A.: Critical-point behavior of a measurement-based quantum heat engine. Phys. Rev. E 98(5), 052147 (2018)

    Article  ADS  Google Scholar 

  20. Chand, S., Biswas, A.: Measurement-induced operation of two-ion quantum heat machines. Phys. Rev. E 95(3), 032111 (2017)

    Article  ADS  Google Scholar 

  21. Mehta, V., Johal, R.S.: Quantum Otto engine with exchange coupling in the presence of level degeneracy. Phys. Rev. E 96(3), 032110 (2017)

    Article  ADS  Google Scholar 

  22. Chand, S., Biswas, A.: Single-ion quantum Otto engine with always-on bath interaction. EPL (Europhys. Lett.) 118(6), 60003 (2017)

    Article  ADS  Google Scholar 

  23. Camati, P.A., Santos, J.F.G., Serra, R.M.: Employing coherence to improve the performance of a quantum heat engine, arXiv:1812.08728 [quant-ph] (2018)

  24. Feldmann, T., Kosloff, R.: Transitions between refrigeration regions in extremely short quantum cycles. Phys. Rev. E 93(5), 052150 (2016)

    Article  ADS  Google Scholar 

  25. Chiara, G.D., Landi, G., Hewgill, A., Reid, B., Ferraro, A., Roncaglia, A.J., Antezza, M.: Reconciliation of quantum local master equations with thermodynamics. New J. Phys. 20(11), 113024 (2018)

    Article  Google Scholar 

  26. Dillenschneider, R., Lutz, E.: Energetics of quantum correlations. EPL (Europhys. Lett.) 88(5), 50003 (2009)

    Article  ADS  Google Scholar 

  27. Scully, M.O., Zubairy, M.S., Agarwal, G.S., Walther, H.: Extracting work from a single heat bath via vanishing quantum coherence. Science 299(5608), 862 (2003)

    Article  ADS  Google Scholar 

  28. Hardal, A.Ü.C., Müstecaplıoğlu, Ö.E.: Superradiant quantum heat engine. Sci. Rep. 5, 12953 (2015)

    Article  ADS  Google Scholar 

  29. Roßnagel, J., Abah, O., Schmidt-Kaler, F., Singer, K., Lutz, E.: Nanoscale heat engine beyond the Carnot limit. Phys. Rev. Lett. 112(3), 030602 (2014)

    Article  ADS  Google Scholar 

  30. Abah, O., Roßnagel, J., Jacob, G., Deffner, S., Schmidt-Kaler, F., Singer, K., Lutz, E.: Single-Ion heat engine at maximum power. Phys. Rev. Lett. 109(20), 203006 (2012)

    Article  ADS  Google Scholar 

  31. Fialko, O., Hallwood, D.W.: Isolated quantum heat engine. Phys. Rev. Lett. 108(8), 085303 (2012)

    Article  ADS  Google Scholar 

  32. Zhang, K., Bariani, F., Meystre, P.: Quantum optomechanical heat engine. Phys. Rev. Lett. 112(15), 150602 (2014)

    Article  ADS  Google Scholar 

  33. Sothmann, B., Büttiker, M.: Magnon-driven quantum-dot heat engine. EPL (Europhys. Lett.) 99(2), 27001 (2012)

    Article  ADS  Google Scholar 

  34. Quan, H.T., Zhang, P., Sun, C.P.: Quantum-classical transition of photon-Carnot engine induced by quantum decoherence. Phys. Rev. E 73(3), 036122 (2006)

    Article  ADS  Google Scholar 

  35. Altintas, F., Hardal, A.Ü.C., Müstecaplıoğlu, Ö.E.: Rabi model as a quantum coherent heat engine: from quantum biology to superconducting circuits. Phys. Rev. A 91(2), 023816 (2015)

    Article  ADS  Google Scholar 

  36. Roßnagel, J., Dawkins, S.T., Tolazzi, K.N., Abah, O., Lutz, E., Schmidt-Kaler, F., Singer, K.: A single-atom heat engine. Science 352(6283), 325 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  37. Peterson, J.P.S., Batalhão, T.B., Herrera, M., Souza, A.M., Sarthour, R.S., Oliveira, I.S., Serra, R.M.: Experimental characterization of a spin quantum heat engine, arXiv:1803.06021 [cond-mat, physics:quant-ph] (2018)

  38. de Assis, R.J., de Mendonça, T.M., Villas-Boas, C.J., de Souza, A.M., Sarthour, R.S., Oliveira, I.S., de Almeida, N.G.: arXiv:1811.02917 [quant-ph] (2018)

  39. Zou, Y., Jiang, Y., Mei, Y., Guo, X., Du, S.: Quantum heat engine using electromagnetically induced transparency. Phys. Rev. Lett. 119(5), 050602 (2017)

    Article  ADS  Google Scholar 

  40. Harris, S.E.: Electromagnetically induced transparency and quantum heat engines. Phys. Rev. A 94(5), 053859 (2016)

    Article  ADS  Google Scholar 

  41. Klatzow, J., Becker, J.N., Ledingham, P.M., Weinzetl, C., Kaczmarek, K.T., Saunders, D.J., Nunn, J., Walmsley, I.A., Uzdin, R., Poem, E.: Experimental demonstration of quantum effects in the operation of microscopic heat engines. Phys. Rev. Lett. 122(11), 110601 (2019)

    Article  ADS  Google Scholar 

  42. Thomas, G., Banik, M., Ghosh, S.: Implications of coupling in quantum thermodynamic machines. Entropy 19(9), 442 (2017)

    Article  Google Scholar 

  43. Huang, X.L., Liu, Y., Wang, Z., Niu, X.Y.: Special coupled quantum Otto cycles. Eur. Phys. J. Plus 129(1), 4 (2014)

    Article  ADS  Google Scholar 

  44. Çakmak, S., Altintas, F., Müstecaplıoğlu, Ö.E.: Lipkin–Meshkov–Glick model in a quantum Otto cycle. Eur. Phys. J. Plus 131(6), 197 (2016)

    Article  Google Scholar 

  45. Uzdin, R., Levy, A., Kosloff, R.: Equivalence of quantum heat machines, and quantum-thermodynamic signatures. Phys. Rev. X 5(3), 031044 (2015)

    Google Scholar 

  46. Uzdin, R.: Coherence-induced reversibility and collective operation of quantum heat machines via coherence recycling. Phys. Rev. Appl. 6(2), 024004 (2016)

    Article  ADS  Google Scholar 

  47. Zhang, X.Y., Huang, X.L., Yi, X.X.: Quantum Otto heat engine with a non-Markovian reservoir. J. Phys. A Math. Theor. 47(45), 455002 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  48. Huang, X.L., Wang, T., Yi, X.X.: Effects of reservoir squeezing on quantum systems and work extraction. Phys. Rev. E 86(5), 051105 (2012)

    Article  ADS  Google Scholar 

  49. Rezek, Y.: Reflections on friction in quantum mechanics. Entropy 12(8), 1885 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  50. Kosloff, R.: Quantum thermodynamics: a dynamical viewpoint. Entropy 15(6), 2100 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  51. Rezek, Y., Salamon, P., Hoffmann, K.H., Kosloff, R.: The quantum refrigerator: the quest for absolute zero. EPL 85(3), 30008 (2009)

    Article  ADS  Google Scholar 

  52. Thomas, G., Johal, R.S.: Friction due to inhomogeneous driving of coupled spins in a quantum heat engine. Eur. Phys. J. B 87(7), 166 (2014)

    Article  ADS  Google Scholar 

  53. Campisi, M., Pekola, J., Fazio, R.: Nonequilibrium fluctuations in quantum heat engines: theory, example, and possible solid state experiments. New J. Phys. 17(3), 035012 (2015)

    Article  ADS  Google Scholar 

  54. Alecce, A., Galve, F., Gullo, N.L., Dell’Anna, L., Plastina, F., Zambrini, R.: Quantum Otto cycle with inner friction: finite-time and disorder effects. New J. Phys. 17(7), 075007 (2015)

    Article  ADS  Google Scholar 

  55. Rezek, Y., Kosloff, R.: Irreversible performance of a quantum harmonic heat engine. New J. Phys. 8(5), 83 (2006)

    Article  ADS  Google Scholar 

  56. Wang, J., He, J., Xin, Y.: Performance analysis of a spin quantum heat engine cycle with internal friction. Phys. Scr. 75(2), 227 (2007)

    Article  ADS  Google Scholar 

  57. Kosloff, R., Feldmann, T.: Discrete four-stroke quantum heat engine exploring the origin of friction. Phys. Rev. E 65(5), 055102 (2002)

    Article  ADS  Google Scholar 

  58. Feldmann, T., Kosloff, R.: Quantum four-stroke heat engine: thermodynamic observables in a model with intrinsic friction. Phys. Rev. E 68(1), 016101 (2003)

    Article  ADS  Google Scholar 

  59. Feldmann, T., Kosloff, R.: Characteristics of the limit cycle of a reciprocating quantum heat engine. Phys. Rev. E 70(4), 046110 (2004)

    Article  ADS  Google Scholar 

  60. Çakmak, B., Müstecaplıoğlu, Ö.E.: Spin quantum heat engines with shortcuts to adiabaticity. Phys. Rev. E 99(3), 032108 (2019)

    Article  ADS  Google Scholar 

  61. Allahverdyan, A.E., Nieuwenhuizen, T.M.: Minimal work principle: proof and counterexamples. Phys. Rev. E 71(4), 046107 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  62. Feldmann, T., Kosloff, R.: Quantum lubrication: suppression of friction in a first-principles four-stroke heat engine. Phys. Rev. E 73(2), 025107 (2006)

    Article  ADS  Google Scholar 

  63. Kosloff, R., Feldmann, T.: Optimal performance of reciprocating demagnetization quantum refrigerators. Phys. Rev. E 82(1), 011134 (2010)

    Article  ADS  Google Scholar 

  64. Feldmann, T., Kosloff, R.: Short time cycles of purely quantum refrigerators. Phys. Rev. E 85(5), 051114 (2012)

    Article  ADS  Google Scholar 

  65. Plastina, F., Alecce, A., Apollaro, T., Falcone, G., Francica, G., Galve, F., Lo Gullo, N., Zambrini, R.: Irreversible work and inner friction in quantum thermodynamic processes. Phys. Rev. Lett. 113(26), 260601 (2014)

    Article  ADS  Google Scholar 

  66. Zheng, Y., Campbell, S., De Chiara, G., Poletti, D.: Cost of counterdiabatic driving and work output. Phys. Rev. A 94(4), 042132 (2016)

    Article  ADS  Google Scholar 

  67. Zheng, Y., Hänggi, P., Poletti, D.: Occurrence of discontinuities in the performance of finite-time quantum Otto cycles. Phys. Rev. E 94(1), 012137 (2016)

    Article  ADS  Google Scholar 

  68. Ivanchenko, E.A.: Quantum Otto cycle efficiency on coupled qudits. Phys. Rev. E 92(3), 032124 (2015)

    Article  ADS  Google Scholar 

  69. Uzdin, R., Kosloff, R.: The multilevel four-stroke swap engine and its environment. New J. Phys. 16(9), 095003 (2014)

    Article  ADS  Google Scholar 

  70. Çakmak, S., Altintas, F., Gençten, A., Müstecaplıoğlu, Ö.E.: Irreversible work and internal friction in a quantum Otto cycle of a single arbitrary spin. Eur. Phys. J. D 71(3), 75 (2017)

    Article  ADS  Google Scholar 

  71. Çakmak, S., Altintas, F., Müstecaplıoğlu, Ö.E.: Irreversibility in a unitary finite-rate protocol: the concept of internal friction. Phys. Scr. 91(7), 075101 (2016)

    Article  ADS  Google Scholar 

  72. Deffner, S.: Efficiency of harmonic quantum Otto engines at maximal power. Entropy 20, 875 (2018)

    Article  ADS  Google Scholar 

  73. Peña, F.J., et al.: Magnetic Otto engine for an electron in a quantum dot: classical and quantum approach. Preprints 2019010079 (2019)

  74. Gardas, B., Deffner, S.: Thermodynamic universality of quantum Carnot engines. Phys. Rev. E 92, 042126 (2015)

    Article  ADS  Google Scholar 

  75. Niedenzu, W., Mukherjee, V., Ghosh, A., Kofman, A.G., Kurizki, G.: Quantum engine efficiency bound beyond the second law of thermodynamics. Nat. Commun. 9, 165 (2018)

    Article  ADS  Google Scholar 

  76. Cherubim, C., Brito, F., Deffner, S.: Non-thermal quantum engine in transmon qubits. Entropy 21(6), 545 (2019)

    Article  ADS  Google Scholar 

  77. Vidal, J., Palacios, G., Aslangul, C.: Entanglement dynamics in the Lipkin–Meshkov–Glick model. Phys. Rev. A 70(6), 062304 (2004)

    Article  ADS  Google Scholar 

  78. Wang, X., Sanders, B.C.: Spin squeezing and pairwise entanglement for symmetric multiqubit states. Phys. Rev. A 68(1), 012101 (2003)

    Article  ADS  Google Scholar 

  79. Lipkin, H.J., Meshkov, N., Glick, A.J.: Validity of many-body approximation methods for a solvable model: (I). Exact solutions and perturbation theory. Nucl. Phys. 62(2), 188 (1965)

    Article  MathSciNet  Google Scholar 

  80. Zibold, T., Nicklas, E., Gross, C., Oberthaler, M.K.: Classical bifurcation at the transition from Rabi to Josephson dynamics. Phys. Rev. Lett. 105(20), 204101 (2010)

    Article  ADS  Google Scholar 

  81. Morrison, S., Parkins, A.S.: Dynamical quantum phase transitions in the dissipative Lipkin–Meshkov–Glick Model with proposed realization in optical cavity QED. Phys. Rev. Lett. 100(4), 040403 (2008)

    Article  ADS  Google Scholar 

  82. Larson, J.: Circuit QED scheme for the realization of the Lipkin–Meshkov–Glick model. EPL 90(5), 54001 (2010)

    Article  ADS  Google Scholar 

  83. Chen, G., Liang, J.Q., Jia, S.: Interaction-induced Lipkin–Meshkov–Glick model in a Bose–Einstein condensate inside an optical cavity. Opt. Express 17(22), 19682 (2009)

    Article  ADS  Google Scholar 

  84. The system operation where \(Q_H>0\), \(Q_L<0\) and \(W<0\) is sometimes regarded as an oven (or an accelerator). The work input is dumped to the cold entropy sink more than the spontaneous thermal conduction. In the present study, we only deal with the quantum heat engine and refrigerator cases, for brevity, and call the other possible situations as having no industrial use

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deniz Türkpençe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Türkpençe, D., Altintas, F. Coupled quantum Otto heat engine and refrigerator with inner friction. Quantum Inf Process 18, 255 (2019). https://doi.org/10.1007/s11128-019-2366-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2366-7

Keywords

Navigation