Skip to main content
Log in

Can quantum discord increase in a quantum communication task?

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum teleportation of an unknown quantum state is one of the few communication tasks which has no classical counterpart. Usually the aim of teleportation is to send an unknown quantum state to a receiver. But is it possible in some way that the receiver’s state has more quantum discord than the sender’s state? We look at a scenario where Alice and Bob share a pure quantum state and Alice has an unknown quantum state. She performs joint measurement on her qubits and channel to prepare Bob’s qubits in a mixed state which has higher quantum discord than hers. We also observe an interesting feature in this scenario, when the quantum discord of Alice’s qubits increases, then the quantum discord of Bob’s prepared qubits decreases. Furthermore, we show that the fidelity of one-qubit quantum teleportation using Bob’s prepared qubits as the channel is higher than using Alice’s qubits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Dakić, B.: Quantum discord as resource for remote state preparation. Nat. Phys. 8, 666–670 (2012)

    Article  Google Scholar 

  3. Horodecki, P., Tuziemski, J., Mazurek, P., Horodecki, R.: Can communication power of separable correlations exceed that of entanglement resource? Phys. Rev. Lett. 112, 140507 (2014)

    Article  ADS  Google Scholar 

  4. Micuda, Michal, Starek, Robert, Marek, Petr, Mikova, Martina, Straka, Ivo, Jezek, Miroslav, Tashima, Toshiyuki, Ozdemir, Sahin K., Tame, Mark: Experimental characterization of a non-local convertor for quantum photonic networks. Opt. Express 25, 7839–7848 (2017)

    Article  ADS  Google Scholar 

  5. Tashima, T., Tame, M.S., Ozdemir, S.K., Nori, F., Koashi, M., Weinfurter, H.: Photonic multipartite entanglement conversion using nonlocal operations. Phys. Rev. A 94, 052309 (2016)

    Article  ADS  Google Scholar 

  6. Oppenheim, J., Horodecki, M., Horodecki, P., Horodecki, R.: Thermodynamical approach to quantifying quantum correlations. Phys. Rev. Lett. 89, 180402 (2002)

    Article  ADS  MATH  Google Scholar 

  7. Ferraro, A., Paris, M.G.A.: Nonclassicality criteria from phase-space representations and information-theoretical constraints are maximally inequivalent. Phys. Rev. Lett. 108, 206403 (2012)

    Article  Google Scholar 

  8. Agudelo, E., Sperling, J., Vogelr, W.: Quasiprobabilities for multipartite quantum correlations of light. Phys. Rev. A 87, 033811 (2013)

    Article  ADS  Google Scholar 

  9. Gheorghiu, Vlad, de Oliveira, Marcos C., Sanders, Barry C.: Nonzero classical discord. Phys. Rev. Lett. 115, 030403 (2015)

    Article  ADS  Google Scholar 

  10. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  11. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A Math. Gen. 34, 6899 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett 100, 050502 (2008)

    Article  ADS  Google Scholar 

  13. Adesso, G., Bromley, T.R., Cianciaruso, M.: Measures and applications of quantum correlations. J. Phys. A Math. Theor. 49, 473001 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Streltsov, A.: Quantum Correlations Beyond Entanglement and Their Role in Quantum Information Theory, pp. 2191–5423. Springer, Berlin (2015)

    MATH  Google Scholar 

  15. Girolami, D., Adesso, G.: Quantum discord for general two-qubit states: analytical progress. Phys. Rev. A 83, 052108 (2011)

    Article  ADS  Google Scholar 

  16. Ozdemir, S.K., Bartkiewicz, K., Liu, Y-x, Miranowicz, A.: Teleportation of qubit states through dissipative channels: conditions for surpassing the no-cloning limit. Phys. Rev. A 76, 042325 (2007)

    Article  ADS  Google Scholar 

  17. Bartkiewicz, K., Miranowicz, A., Ozdemir, S.K.: Optimal mirror phase-covariant cloning. Phys. Rev. A 80, 032306 (2009)

    Article  ADS  Google Scholar 

  18. Julia-Díaz, B., Burdis, J.M., Tabakin, F.: QDENSITY-A mathematica quantum computer simulation. Comp. Phys. Commun. 180, 474 (2009)

    Article  ADS  MATH  Google Scholar 

  19. Verstraete, F., Verschelde, H.: Optimal teleportation with a mixed state of two qubits. Phys. Rev. Lett. 90, 097901 (2003)

    Article  ADS  Google Scholar 

  20. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  21. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Satyabrata Adhikari and Prasanta Kumar Panigrahi for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubhayan Sarkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, S., Datta, C. Can quantum discord increase in a quantum communication task?. Quantum Inf Process 17, 248 (2018). https://doi.org/10.1007/s11128-018-2019-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2019-2

Keywords

Navigation