Skip to main content
Log in

Connecting unextendible maximally entangled base with partial Hadamard matrices

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study the unextendible maximally entangled bases (UMEB) in \(\mathbb {C}^{d}\bigotimes \mathbb {C}^{d}\) and connect the problem to the partial Hadamard matrices. We show that for a given special UMEB in \(\mathbb {C}^{d}\bigotimes \mathbb {C}^{d}\), there is a partial Hadamard matrix which cannot be extended to a Hadamard matrix in \(\mathbb {C}^{d}\). As a corollary, any \((d-1)\times d\) partial Hadamard matrix can be extended to a Hadamard matrix, which answers a conjecture about \(d=5\). We obtain that for any d there is a UMEB except for \(d=p\ \text {or}\ 2p\), where \(p\equiv 3\mod 4\) and p is a prime. The existence of different kinds of constructions of UMEBs in \(\mathbb {C}^{nd}\bigotimes \mathbb {C}^{nd}\) for any \(n\in \mathbb {N}\) and \(d=3\times 5 \times 7\) is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Very recently, after reading a paper by Guo [18], we notice we have made some mistakes in [11]. Here we take a chance to correct the mistakes. All \(\widetilde{N}=(qd)^2-(d^2-N)\) should be replaced by \(\widetilde{N}=(qd)^2-q(d^2-N)\). In the proof of Theorem 1 in [11], we made a mistake in the sencond equality of the following:

    $$\begin{aligned} \widetilde{N}=q(q-1)d^2+qN=(qd)^2-\left( d^2-N\right) <q^2d^2. \end{aligned}$$

    Hence, it should be replaced by

    $$\begin{aligned} \widetilde{N}=q(q-1)d^2+qN=(qd)^2-q\left( d^2-N\right) <q^2d^2. \end{aligned}$$

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  2. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Horodecki, P.: Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A 232, 333 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Horodecki, M.: Entanglement measures. Quantum Inf. Comput. 1, 3 (2001)

    MathSciNet  MATH  Google Scholar 

  5. DiVincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.: Unextendible product bases, uncompletable product bases and bound entanglement. Commun. Math. Phys. 238, 379 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bennett, C.H., DiVincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.: Unextendible product bases and bound entanglement. Phys. Rev. Lett. 82, 5385 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. De Rinaldis, S.: Distinguishability of complete and unextendible product bases. Phys. Rev. A 70, 022309 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Bravyi, S., Smolin, J.A.: Unextendible maximally entangled bases. Phys. Rev. A 84, 042306 (2011)

    Article  ADS  Google Scholar 

  9. Chen, B., Fei, S.M.: Unextendible maximally entangled bases and mutually unbiased bases. Phys. Rev. A 88, 034301 (2013)

    Article  ADS  Google Scholar 

  10. Li, M.-S., Wang, Y.-L., Zheng, Z.-J.: Unextendible maximally entangled bases in \(\mathbb{C}^{d}\bigotimes \mathbb{C}^{d^{\prime }}\). Phys. Rev. A 89, 062313 (2014)

    Article  ADS  Google Scholar 

  11. Wang, Y.-L., Li, M.-S., Fei, S.M.: Unextendible maximally entangled bases in \(\mathbb{C}^{d}\bigotimes \mathbb{C}^{d}\). Phys. Rev. A 90, 034301 (2014)

    Article  ADS  Google Scholar 

  12. Butson, A.T.: Generalized Hadamard matrices. Proc. Am. Math. Soc. 13, 894C898 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zauner, G.: Quantendesigns: Grundzauge einer nichtkommutativen Designtheorie (German) [Quantumdesigns: the foundations of a noncommutative design theory]. Ph.D. Thesis, Universitat Wien. http://www.mat.univie.ac.at/neum/ms/zauner (1999)

  14. Tadej, W., Zyczkowski, K.: A concise guide to complex Hadamard matrices. Open Syst. Inf. Dyn. 13, 133C177 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Verheiden, E.: Integral and rational completions of combinatorial matrices. J. Comb. Theory Ser. A 25, 267 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  16. de Launey, W., Levin, D.A.: A Fourier-analytic approach to counting partial Hadamard matrices. Cryptogr. Commun. 2, 307 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Banica, T., Skalski, A.: The quantum algebra of partial Hadamard matrices. Linear Algebra Appl. 469, 364 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Guo, Y.: Constructing the unextendible maximally entangled basis from the maximally entangled basis. Phys. Rev. A 94, 052302 (2016)

    Article  ADS  Google Scholar 

  19. Guo, Y., Wu, S.: Unextendible entangled bases with fixed Schmidt number. Phys. Rev. A 90, 054303 (2014)

    Article  ADS  Google Scholar 

  20. Guo, Y., Jia, Y., Li, X.: Multipartite unextendible entangled basis. Quantum Inf. Process. 14, 3553 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the NSFC 11475178, NSFC 11571119 and NSFC 11275131.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu-Jun Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YL., Li, MS., Fei, SM. et al. Connecting unextendible maximally entangled base with partial Hadamard matrices. Quantum Inf Process 16, 84 (2017). https://doi.org/10.1007/s11128-017-1537-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1537-7

Keywords

Navigation