Skip to main content
Log in

Protecting tripartite entanglement in non-Markovian environments via quantum partially collapsing measurements

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, the dynamics of tripartite entanglement via \(\pi \)-tangle in independent non-Markovian environments is investigated. The results indicate that the \(\pi \)-tangle vanishes periodically as decoherence time increases with a damping of its revival amplitude due to the memory of the non-Markovian environments. In addition, we present a scheme to protect entanglement of W state from non-Markovian environments by means of the quantum partially collapsing measurements. It is worth mentioning that our scheme is a successful protection for the tripartite quantum system and the effect is better for the larger measurement strength, while the stronger decoherence suppression induces smaller success probability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schrödinger, E.: Die gegenwärtige situation in der quantenmechanik. Naturwissenschaften 23, 807–812, 823–828, 844–849 (1935)

  2. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  3. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Boschi, D., Branca, S., Martini, F.D., Hardy, L., Popescu, S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Alsing, P.M., Milburn, G.J.: Teleportation with a uniformly accelerated partner. Phys. Rev. Lett. 91, 180404 (2003)

    Article  ADS  Google Scholar 

  7. Bennett, C.H., Wiesner, J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Mattle, K., Weinfurter, H., Kwia, P.G., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656–4659 (1996)

    Article  ADS  Google Scholar 

  9. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  ADS  Google Scholar 

  10. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–775 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Schlosshawer, M.: Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 76, 1267–1305 (2005)

    Article  ADS  Google Scholar 

  12. Almeida, M.P., et al.: Environment-induced sudden death of entanglement. Science 316, 579 (2007)

    Article  ADS  Google Scholar 

  13. Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323, 598 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Bellomo, B., Franco, R.L., Compagno, G.: Non-Markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 99, 160502 (2007)

    Article  ADS  Google Scholar 

  15. Obando, P.C., Paula, F.M., Sarandy, M.S.: Trace-distance correlations for X states and the emergence of the pointer basis in Markovian and non-Markovian regimes. Phys. Rev. A 92, 032307 (2015)

    Article  ADS  Google Scholar 

  16. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)

    Article  ADS  Google Scholar 

  17. Horodecki, M., Horodecki, P., Horodecki, R.: Mixed-state entanglement and distillation: is there a “Bound” entanglement in nature? Phys. Rev. Lett. 80, 5239–5242 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Pan, J.W., Gasparoni, S., Ursin, R., Weihs, G., Zeilinger, A.: Experimental entanglement purification of arbitrary unknown states. Nature 423, 417–421 (2003)

    Article  ADS  Google Scholar 

  19. Vollbrecht, K.G.H., Muschik, C.A., Cirac, J.I.: Entanglement distillation by dissipation and continuous quantum repeaters. Phys. Rev. Lett. 107, 120502 (2011)

    Article  ADS  Google Scholar 

  20. Itano, W.M., Heinzen, D.J., Bollinger, J.J., Wineland, D.J.: Quantum Zeno effect. Phys. Rev. A 41, 2295–2300 (1990)

    Article  ADS  Google Scholar 

  21. Maniscalco, S., Francica, F., Zaffino, R.L., Gullo, N.L., Plastina, F.: Protecting entanglement via the quantum Zeno effect. Phys. Rev. Lett. 100, 090503 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594–2597 (1998)

    Article  ADS  Google Scholar 

  23. Kwiat, P.G., Berglund, A.J., Alterpeter, J.B., White, A.G.: Experimental verification of decoherence-free subspaces. Science 290, 498–501 (2000)

    Article  ADS  Google Scholar 

  24. Man, Z.X., An, N.B., Xia, Y.J.: Improved quantum state transfer via quantum partially collapsing measurements. Ann. Phys. 349, 209–219 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  25. Korotkov, A.N., Jordan, A.N.: Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett. 97, 166805 (2006)

    Article  ADS  Google Scholar 

  26. Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81, 040103 (2010)

    Article  ADS  Google Scholar 

  27. Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117–120 (2012)

    Article  Google Scholar 

  28. Man, Z.X., Xia, Y.J., An, N.B.: Enhancing entanglement of two qubits undergoing independent decoherences by local pre- and postmeasurements. Phys. Rev. A 86, 052322 (2012)

    Article  ADS  Google Scholar 

  29. He, J., Ye, L.: Protecting entanglement under depolarizing noise environment by using weak measurements. Physica A 419, 7–13 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  30. Man, Z.X., Xia, Y.J., An, N.B.: Manipulating entanglement of two qubits in a common environment by means of weak measurements and quantum measurement reversals. Phys. Rev. A 86, 012325 (2012)

    Article  ADS  Google Scholar 

  31. Wang, K., Zhao, X.Y., Yu, T.: Environment-assisted quantum state restoration via weak measurements. Phys. Rev. A 89, 042320 (2014)

    Article  ADS  Google Scholar 

  32. Wang, S.C., Yu, Z.W., Zou, W.J., Wang, X.B.: Protecting quantum states from decoherence of finite temperature using weak measurement. Phys. Rev. A 89, 022318 (2014)

    Article  ADS  Google Scholar 

  33. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517–576 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  35. Loock, P.V., Braunstein, S.L.: Multipartite entanglement for continuous variables: a quantum teleportation network. Phys. Rev. Lett. 84, 3482–3485 (2000)

    Article  ADS  Google Scholar 

  36. Ou, Y.C., Fan, H.: Monogamy inequality in terms of negativity for three-qubit states. Phys. Rev. A 75, 062308 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  37. Lee, J.C., Jeong, Y.C., Kim, Y.S., Kim, Y.H.: Experimental demonstration of decoherence suppression via quantum measurement reversal. Opt. Express 19, 16309 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (Grant Nos. 61275119 and 11575001), the Natural Science Research Project of Education Department of Anhui Province of China under Grant No. KJ2016A547, and also by the Doctoral Foundation of Fuyang Normal University (Grant No. FYNU1602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, ZY., He, J. & Ye, L. Protecting tripartite entanglement in non-Markovian environments via quantum partially collapsing measurements. Quantum Inf Process 15, 3273–3283 (2016). https://doi.org/10.1007/s11128-016-1342-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1342-8

Keywords

Navigation