Skip to main content
Log in

Entangled photon-added coherent states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study the degree of entanglement of arbitrary superpositions of mn photon-added coherent states (PACS) \(\mathinner {|{\psi }\rangle } \propto u \mathinner {|{{\alpha },m}\rangle }\mathinner {|{{\beta },n }\rangle }+ v \mathinner {|{{\beta },n}\rangle }\mathinner {|{{\alpha },m}\rangle }\) using the concurrence and obtain the general conditions for maximal entanglement. We show that photon addition process can be identified as an entanglement enhancer operation for superpositions of coherent states (SCS). Specifically for the known bipartite positive SCS: \(\mathinner {|{\psi }\rangle } \propto \mathinner {|{\alpha }\rangle }_a\mathinner {|{-\alpha }\rangle }_b + \mathinner {|{-\alpha }\rangle }_a\mathinner {|{\alpha }\rangle }_b \) whose entanglement tends to zero for \(\alpha \rightarrow 0\), can be maximal if al least one photon is added in a subsystem. A full family of maximally entangled PACS is also presented. We also analyzed the decoherence effects in the entangled PACS induced by a simple depolarizing channel . We find that robustness against depolarization is increased by adding photons to the coherent states of the superposition. We obtain the dependence of the critical depolarization \(p_{\text {crit}}\) for null entanglement as a function of \(m,n, \alpha \) and \(\beta \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jozsa, R., Linden, N.: On the role of entanglement in quantum-computational speed-up. Proc. R. Soc. A Math. Phys. Eng. Sci. 459(2036), 2011–2032 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Steane, A.: Quantum computing. Rep. Prog. Phys. 61(2), 117 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bennett, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature 404, 247 (2000)

    Article  ADS  Google Scholar 

  4. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409(6816), 46–52 (2001)

    Article  ADS  MATH  Google Scholar 

  5. Wang, S., Hou, L.L., Chen, X.F., Xu, X.F.: Continuous-variable quantum teleportation with non-Gaussian entangled states generated via multiple-photon subtraction and addition. Phys. Rev. A 91(6), 063832 (2015)

    Article  ADS  Google Scholar 

  6. Madsen, L.S., Usenko, V.C., Lassen, M., Filip, R., Andersen, U.L.: Continuous variable quantum key distribution with modulated entangled states. Nat. Commun. 3, 1083 (2012)

    Article  ADS  Google Scholar 

  7. Neergaard-Nielsen, J.S., Takeuchi, M., Wakui, K., Takahashi, H., Hayasaka, K., Takeoka, M., Sasaki, M.: Optical Continuous-Variable Qubit. Phys. Rev. Lett. 105(5), 053602 (2010)

    Article  ADS  MATH  Google Scholar 

  8. Braunstein, S.L.: Quantum information with continuous variables. Rev. Mod. Phys. 77(2), 513–577 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Zavatta, A., Viciani, S., Bellini, M.: Quantum-to-classical transition with single-photon-added coherent states of light. Science 306(5696), 660–662 (2004)

    Article  ADS  Google Scholar 

  10. Agarwal, G., Tara, K.: Nonclassical properties of states generated by the excitations on a coherent state. Phys. Rev. A 43(1), 492–497 (1991)

    Article  ADS  Google Scholar 

  11. Kenfack, A., Zyczkowski, K.: Negativity of the Wigner function as an indicator of non-classicality. J. Opt. B Quantum Semiclass. Opt. 6(10), 396 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  12. Bartley, T.J., Walmsley, I.A.: Directly comparing entanglement-enhancing non-Gaussian operations. New J. Phys 17(2), 023,038 (2015)

    Article  Google Scholar 

  13. Eisert, J., Scheel, S., Plenio, M.B.: Distilling Gaussian states with gaussian operations is impossible. Phys. Rev. Lett. 89(13), 137903 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Pinheiro, P.V.P., Ramos, R.V.: Quantum communication with photon-added coherent states. Quantum Inf. Process. 12(1), 537–547 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Nogueira, K., Silva, J.B.R., Gonçalves, J.R., Vasconcelos, H.M.: Polarization and entanglement of photon-added coherent states. Phys. Rev. A 87(4), 043,821 (2013)

    Article  Google Scholar 

  16. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  Google Scholar 

  17. Sanders, B.C.: Review of entangled coherent states. J. Phys. A Math. Theor. 45(24), 244002 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Sanders, B.C.: Entangled coherent states. Phys. Rev. A 45(9), 6811–6815 (1992)

    Article  ADS  Google Scholar 

  19. Navarrete-Benlloch, C., García-Patrón, R., Shapiro, J.H., Cerf, N.J.: Enhancing quantum entanglement by photon addition and subtraction. Phys. Rev. A 86, 012328 (2012)

    Article  ADS  Google Scholar 

  20. Nielsen, M., Chuang, I.L.: Quantum Computation and Quantum Information, 1st edn. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  21. Holevo, A.S., Giovannetti, V.: Quantum channels and their entropic characteristics. Rep. Prog. Phys. 75(4), 046001 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  22. Audretsch, J.: Entangled Systems, New Directions in Quantum Physics. Wiley-VCH Verlag GmbH, Weinheim (2008)

    MATH  Google Scholar 

  23. O’Connor, K.M., Wootters, W.K.: Entangled rings. Phys. Rev. A 63, 052302 (2001)

    Article  ADS  Google Scholar 

  24. Jeong, H., Zavatta, A., Kang, M., Lee, Sw, Costanzo, L.S., Grandi, S., Ralph, T.C., Bellini, M.: Generation of hybrid entanglement of light. Nat. Photonics 8, 564–569 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

FDS acknowledges receipt of a PhD scholarship from CONACYT (Grant No. 331668). Thanks are due to Dr. E. Cota for useful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco A. Domínguez-Serna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domínguez-Serna, F.A., Mendieta-Jimenez, F.J. & Rojas, F. Entangled photon-added coherent states. Quantum Inf Process 15, 3121–3136 (2016). https://doi.org/10.1007/s11128-016-1325-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1325-9

Keywords

Navigation