Skip to main content
Log in

Technologies for trapped-ion quantum information systems

Progress toward scalability with hybrid systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Scaling up from prototype systems to dense arrays of ions on chip, or vast networks of ions connected by photonic channels, will require developing entirely new technologies that combine miniaturized ion trapping systems with devices to capture, transmit, and detect light, while refining how ions are confined and controlled. Building a cohesive ion system from such diverse parts involves many challenges, including navigating materials incompatibilities and undesired coupling between elements. Here, we review our recent efforts to create scalable ion systems incorporating unconventional materials such as graphene and indium tin oxide, integrating devices like optical fibers and mirrors, and exploring alternative ion loading and trapping techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Paul, W., Steinwedel, H.: New mass spectrometer without a magnetic field. Zeitschrift fuer Naturforschung A(8), 448 (1953)

    ADS  Google Scholar 

  2. Cirac, J., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74(20), 4091 (1995)

    Article  ADS  Google Scholar 

  3. Monroe, C., Meekhof, D., King, B., Itano, W., Wineland, D.: Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75(25), 4714 (1995). doi:10.1103/PhysRevLett.75.4714

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Wineland, D., Monroe, C., Itano, W., Leibfried, D., King, B., Meekhof, D.: Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl. Inst. Stand. Technol. 103(3), 259 (1998)

    Article  MATH  Google Scholar 

  5. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  6. Mintert, F., Wunderlich, C.: Ion-trap quantum logic using long-wavelength radiation. Phys. Rev. Lett. 87(25), 257904 (2001)

    Article  ADS  Google Scholar 

  7. Ospelkaus, C., Langer, C.E., Amini, J.M., Brown, K.R., Leibfried, D., Wineland, D.J.: Trapped-ion quantum logic gates based on oscillating magnetic fields. Phys. Rev. Lett. 101(9), 090502 (2008)

    Article  ADS  Google Scholar 

  8. Ospelkaus, C., Warring, U., Colombe, Y., Brown, K.R., Amini, J.M., Leibfried, D., Wineland, D.J.: Microwave quantum logic gates for trapped ions. Nature 476(7359), 181 (2011)

    Article  ADS  Google Scholar 

  9. Timoney, N., Baumgart, I., Johanning, M., Varon, A.F., Plenio, M.B., Retzker, A., Wunderlich, C.: Quantum gates and memory using microwave-dressed states. Nature 476(7359), 185 (2011)

    Article  ADS  Google Scholar 

  10. Barrett, M., Chiaverini, J., Schaetz, T., Britton, J.: Deterministic quantum teleportation of atomic qubits. Nature 803(1982), 802 (2004)

    Google Scholar 

  11. Riebe, M., Chwalla, M., Benhelm, J., Häffner, H., Hänsel, W., Roos, C.F., Blatt, R.: Quantum teleportation with atoms: quantum process tomography. New J. Phys. 9(7), 211 (2007)

    Article  ADS  Google Scholar 

  12. Olmschenk, S., Matsukevich, D., Maunz, P.: Quantum teleportation between distant matter qubits. Science 323, 486 (2009)

    Article  ADS  Google Scholar 

  13. Stute, A., Casabone, B., Brandstätter, B., Friebe, K., Northup, T.E., Blatt, R.: Quantum-state transfer from an ion to a photon. Nat. Photonics 7(3), 219 (2013)

    Article  ADS  Google Scholar 

  14. Kim, K., Chang, M.S., Korenblit, S., Islam, R., Edwards, E.E., Freericks, J.K., Lin, G.D., Duan, L.M., Monroe, C.: Quantum simulation of frustrated Ising spins with trapped ions. Nature 465(7298), 590 (2010)

    Article  ADS  Google Scholar 

  15. Barreiro, J.T., Müller, M., Schindler, P., Nigg, D., Monz, T., Chwalla, M., Hennrich, M., Roos, C.F., Zoller, P., Blatt, R.: An open-system quantum simulator with trapped ions. Nature 470(7335), 486 (2011)

    Article  ADS  Google Scholar 

  16. Lanyon, B., Hempel, C., Nigg, D., Müller, M.: Universal digital quantum simulation with trapped ions. Science 334, 57 (2011)

  17. Gerritsma, R., Lanyon, B.P., Kirchmair, G., Zähringer, F., Hempel, C., Casanova, J., García-Ripoll, J.J., Solano, E., Blatt, R., Roos, C.F.: Quantum simulation of the Klein paradox with trapped ions. Phys. Rev. Lett. 106(6), 060503 (2011)

    Article  ADS  Google Scholar 

  18. Britton, J.W., Sawyer, B.C., Keith, A.C., Wang, C.C.J., Freericks, J.K., Uys, H., Biercuk, M.J., Bollinger, J.J.: Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins. Nature 484(7395), 489 (2012)

    Article  ADS  Google Scholar 

  19. Blatt, R., Roos, C.F.: Quantum simulations with trapped ions. Nat. Phys. 8(4), 277 (2012)

    Article  Google Scholar 

  20. Islam, R., Senko, C., Campbell, W., Korenblit, S.: Emergence and frustration of magnetism with variable-range interactions in a quantum simulator. Science 340, 583 (2013)

  21. Chiaverini, J., Britton, J., Leibfried, D., Knill, E., Barrett, M.D., Blakestad, R.B., Itano, W.M., Jost, J.D., Langer, C., Ozeri, R., Schaetz, T., Wineland, D.J.: Implementation of the semiclassical quantum Fourier transform in a scalable system. Science 308(5724), 997 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Schindler, P., Nigg, D., Monz, T., Barreiro, J.T., Martinez, E., Wang, S.X., Quint, S., Brandl, M.F., Nebendahl, V., Roos, C.F., Chwalla, M., Hennrich, M., Blatt, R.: A quantum information processor with trapped ions. New J. Phys. 15(12), 123012 (2013)

    Article  ADS  Google Scholar 

  23. Gulde, S., Riebe, M., Lancaster, G.P.T., Becher, C., Eschner, J., Häffner, H., Schmidt-Kaler, F., Chuang, I.L., Blatt, R.: Implementation of the Deutsch–Jozsa algorithm on an ion-trap quantum computer. Nature 421(6918), 48 (2003)

    Article  ADS  Google Scholar 

  24. Brickman, K.A., Haljan, P., Lee, P., Acton, M., Deslauriers, L., Monroe, C.: Implementation of Grover’s quantum search algorithm in a scalable system. Phys. Rev. A 72(5), 050306 (2005)

    Article  ADS  Google Scholar 

  25. Schindler, P., Barreiro, J.T., Monz, T., Nebendahl, V., Nigg, D., Chwalla, M., Hennrich, M., Blatt, R.: Experimental repetitive quantum error correction. Science 332(6033), 1059 (2011)

    Article  ADS  Google Scholar 

  26. DiVincenzo, D.: Quantum computation. Science 270(5234), 255 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. DiVincenzo, D.P.: The physical implementation of quantum computation. Fortschr. Phys. 48(9–11), 771 (2000)

    Article  MATH  Google Scholar 

  28. Monroe, C., Meekhof, D.M., King, B.E.: Resolved-sideband Raman cooling of a bound atom to the 3D zero-point energy. Phys. Rev. Lett. 75(22), 4011 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  29. King, B., Wood, C., Myatt, C., Turchette, Q., Leibfried, D., Itano, W., Monroe, C., Wineland, D.: Cooling the collective motion of trapped ions to initialize a quantum register. Phys. Rev. Lett. 81(7), 1525 (1998)

    Article  ADS  Google Scholar 

  30. Roos, C., Zeiger, T., Rohde, H., Nägerl, H., Eschner, J., Leibfried, D., Schmidt-Kaler, F., Blatt, R.: Quantum state engineering on an optical transition and decoherence in a Paul trap. Phys. Rev. Lett. 83(23), 4713 (1999)

    Article  ADS  Google Scholar 

  31. Nägerl, H., Leibfried, D., Rohde, H., Thalhammer, G., Eschner, J., Schmidt-Kaler, F., Blatt, R.: Laser addressing of individual ions in a linear ion trap. Phys. Rev. A 60(1), 145 (1999)

    Article  ADS  Google Scholar 

  32. Monroe, C., Meekhof, D.D., King, B.B., Itano, W., Wineland, D.: Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75(25), 4714 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Sackett, C.A., Kielpinski, D., King, B.E., Langer, C., Meyer, V., Myatt, C.J., Rowe, M., Turchette, Q.A., Itano, W.M., Wineland, D.J., Monroe, C.: Experimental entanglement of four particles. Nature 404(6775), 256 (2000)

    Article  ADS  Google Scholar 

  34. Leibfried, D., DeMarco, B., Meyer, V., Lucas, D., Barrett, M., Britton, J., Itano, W.M., Jelenković, B., Langer, C., Rosenband, T., Wineland, D.J.: Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature 422(6930), 412 (2003)

    Article  ADS  Google Scholar 

  35. Schmidt-Kaler, F., Häffner, H., Riebe, M., Gulde, S., Lancaster, G.P.T., Deuschle, T., Becher, C., Roos, C.F., Eschner, J., Blatt, R.: Realization of the Cirac–Zoller controlled-NOT quantum gate. Nature 422(6930), 408 (2003)

    Article  ADS  Google Scholar 

  36. Monz, T., Kim, K., Hänsel, W., Riebe, M., Villar, A., Schindler, P., Chwalla, M., Hennrich, M., Blatt, R.: Realization of the quantum Toffoli gate with trapped ions. Phys. Rev. Lett. 102(4), 040501 (2009)

    Article  ADS  Google Scholar 

  37. Rowe, M.A., Kielpinski, D., Meyer, V., Sackett, C.A.: Experimental violation of a Bell’s inequality with efficient detection. Nature 409(6822), 791 (2001)

    Article  ADS  Google Scholar 

  38. Myerson, A., Szwer, D., Webster, S., Allcock, D., Curtis, M., Imreh, G., Sherman, J., Stacey, D., Steane, A., Lucas, D.: High-fidelity readout of trapped-ion qubits. Phys. Rev. Lett. 100(20), 2 (2008)

    Article  Google Scholar 

  39. Chiaverini, J., Blakestad, R.B., Britton, J., Jost, J.D., Langer, C., Leibfried, D., Ozeri, R., Wineland, D.J.: Surface-electrode architecture for ion-trap quantum information processing. Quantum Inf. Comput. 5(6), 419 (2005)

    MathSciNet  MATH  Google Scholar 

  40. Seidelin, S., Chiaverini, J., Reichle, R., Bollinger, J., Leibfried, D., Britton, J., Wesenberg, J., Blakestad, R., Epstein, R., Hume, D., Itano, W., Jost, J., Langer, C., Ozeri, R., Shiga, N., Wineland, D.: Microfabricated surface-electrode ion trap for scalable quantum information processing. Phys. Rev. Lett. 96(25), 253003 (2006)

    Article  ADS  Google Scholar 

  41. Brown, K., Clark, R., Labaziewicz, J., Richerme, P., Leibrandt, D., Chuang, I.: Loading and characterization of a printed-circuit-board atomic ion trap. Phys. Rev. A 75(1), 015401 (2007)

    Article  ADS  Google Scholar 

  42. Eltony, A.M., Park, H.G., Wang, S.X., Kong, J., Chuang, I.L.: Motional heating in a graphene-coated ion trap. Nano Lett. 14(10), 5712 (2014)

    Article  ADS  Google Scholar 

  43. Wang, S.X., Ge, Y., Labaziewicz, J., Dauler, E., Berggren, K., Chuang, I.L.: Superconducting microfabricated ion traps. Appl. Phys. Lett. 97(24), 244102 (2010)

    Article  ADS  Google Scholar 

  44. Eltony, A.M., Wang, S.X., Akselrod, G.M., Herskind, P.F., Chuang, I.L.: Transparent ion trap with integrated photodetector. Appl. Phys. Lett. 102(05), 054106 (2013)

    Article  ADS  Google Scholar 

  45. Kim, T.H., Herskind, P.F., Chuang, I.L.: Surface-electrode ion trap with integrated light source. Appl. Phys. Lett. 98(21), 214103 (2011)

    Article  ADS  Google Scholar 

  46. Cetina, M., Bylinskii, A., Karpa, L., Gangloff, D., Beck, K.M., Ge, Y., Scholz, M., Grier, A.T., Chuang, I., Vuletić, V.: One-dimensional array of ion chains coupled to an optical cavity. New J. Phys. 15(5), 053001 (2013)

    Article  ADS  Google Scholar 

  47. Turchette, Q.A., King, B.E., Leibfried, D., Meekhof, D.M., Myatt, C.J., Rowe, M.A., Sackett, C.A., Wood, C.S., Itano, W.M., Monroe, C., Wineland, D.J.: Heating of trapped ions from the quantum ground state. Phys. Rev. A 61(06), 063418 (2000)

    Article  ADS  Google Scholar 

  48. DeVoe, R., Kurtsiefer, C.: Experimental study of anomalous heating and trap instabilities in a microscopic 137 Ba ion trap. Phys. Rev. A 65(6), 063407 (2002)

    Article  ADS  Google Scholar 

  49. Deslauriers, L., Olmschenk, S., Stick, D., Hensinger, W., Sterk, J., Monroe, C.: Scaling and suppression of anomalous heating in ion traps. Phys. Rev. Lett. 97(10), 103007 (2006)

    Article  ADS  Google Scholar 

  50. Labaziewicz, J., Ge, Y., Antohi, P., Leibrandt, D., Brown, K., Chuang, I.: Suppression of heating rates in cryogenic surface-electrode ion traps. Phys. Rev. Lett. 100(01), 013001 (2008)

    Article  ADS  Google Scholar 

  51. Labaziewicz, J., Ge, Y., Leibrandt, D., Wang, S., Shewmon, R., Chuang, I.: Temperature dependence of electric field noise above gold surfaces. Phys. Rev. Lett. 101(18), 180602 (2008)

    Article  ADS  Google Scholar 

  52. Deslauriers, L., Haljan, P., Lee, P., Brickman, K.A., Blinov, B., Madsen, M., Monroe, C.: Zero-point cooling and low heating of trapped \({}^{111}{\rm Cd}^{+}\) ions. Phys. Rev. A 70(04), 043408 (2004)

  53. Dubessy, R., Coudreau, T., Guidoni, L.: Electric field noise above surfaces: a model for heating-rate scaling law in ion traps. Phys. Rev. A 80(03), 031402 (2009)

    Article  ADS  Google Scholar 

  54. Safavi-Naini, A., Rabl, P., Weck, P.F., Sadeghpour, H.R.: Microscopic model of electric-field-noise heating in ion traps. Phys. Rev. A 84(02), 023412 (2011)

    Article  ADS  Google Scholar 

  55. Low, G.H., Herskind, P., Chuang, I.: Finite-geometry models of electric field noise from patch potentials in ion traps. Phys. Rev. A 84(05), 053425 (2011)

    Article  ADS  Google Scholar 

  56. Daniilidis, N., Narayanan, S., Möller, S.A., Clark, R., Lee, T.E., Leek, P.J., Wallraff, A., Schulz, S., Schmidt-Kaler, F., Häffner, H.: Fabrication and heating rate study of microscopic surface electrode ion traps. New J. Phys. 14(7), 079504 (2012)

    Article  ADS  Google Scholar 

  57. Bruzewicz, C.D., Sage, J.M., Chiaverini, J.: Measurement of ion motional heating rates over a range of trap frequencies and temperatures. Phys. Rev. A 91(4), 041402 (2015)

    Article  ADS  Google Scholar 

  58. Hite, D., Colombe, Y., Wilson, A., Brown, K., Warring, U., Jördens, R., Jost, J., McKay, K., Pappas, D., Leibfried, D., Wineland, D.: 100-fold reduction of electric-field noise in an ion trap cleaned with in situ argon-ion-beam bombardment. Phys. Rev. Lett. 109(10), 103001 (2012)

    Article  ADS  Google Scholar 

  59. Hite, D., Colombe, Y., Wilson, A., Allcock, D., Leibfried, D., Wineland, D., Pappas, D.: Surface science for improved ion traps. MRS Bull. 38(10), 826 (2013)

    Article  Google Scholar 

  60. Daniilidis, N., Gerber, S., Bolloten, G., Ramm, M., Ransford, A., Ulin-Avila, E., Talukdar, I., Häffner, H.: Surface noise analysis using a single-ion sensor. Phys. Rev. B 89(24), 245435 (2014)

    Article  ADS  Google Scholar 

  61. Chiaverini, J., Sage, J.M.: Insensitivity of the rate of ion motional heating to trap-electrode material over a large temperature range. Phys. Rev. A 89(1), 012318 (2014)

    Article  ADS  Google Scholar 

  62. Devoret, M.H., Schoelkopf, R.J.: Superconducting circuits for quantum information: an outlook. Science 339(6124), 1169 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  63. Tian, L., Rabl, P., Blatt, R., Zoller, P.: Interfacing quantum-optical and solid-state qubits. Phys. Rev. Lett. 92(24), 247902 (2004)

    Article  ADS  Google Scholar 

  64. Kielpinski, D., Kafri, D., Woolley, M.J., Milburn, G.J., Taylor, J.M.: Quantum interface between an electrical circuit and a single atom. Phys. Rev. Lett. 108(13), 130504 (2012)

    Article  ADS  Google Scholar 

  65. Schuster, D.I., Bishop, L.S., Chuang, I.L., DeMille, D., Schoelkopf, R.J.: Cavity QED in a molecular ion trap. Phys. Rev. A 83(1), 012311 (2011)

    Article  ADS  Google Scholar 

  66. Cirac, J., Zoller, P.: A scalable quantum computer with ions in an array of microtraps. Nature 404(6778), 579 (2000)

    Article  ADS  Google Scholar 

  67. Hensinger, W.K., Olmschenk, S., Stick, D., Hucul, D., Yeo, M., Acton, M., Deslauriers, L., Monroe, C., Rabchuk, J.: T-junction ion trap array for two-dimensional ion shuttling, storage, and manipulation. Appl. Phys. Lett. 88(3), 034101 (2006)

    Article  ADS  Google Scholar 

  68. Wang, X., Tabakman, S.M., Dai, H.: Atomic layer deposition of metal oxides on pristine and functionalized graphene. J. Am. Chem. Soc. 130(26), 8152 (2008)

    Article  Google Scholar 

  69. Sutter, E., Albrecht, P., Camino, F.E., Sutter, P.: Monolayer graphene as ultimate chemical passivation layer for arbitrarily shaped metal surfaces. Carbon 48(15), 4414 (2010)

    Article  Google Scholar 

  70. Chen, S., Brown, L., Levendorf, M., Cai, W., Ju, S.Y., Edgeworth, J., Li, X., Magnuson, C.W., Velamakanni, A., Piner, R.D., Kang, J., Park, J., Ruoff, R.S.: Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano 5(2), 1321 (2011)

    Article  Google Scholar 

  71. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666 (2004)

    Article  ADS  Google Scholar 

  72. Li, X., Zhu, Y., Cai, W., Borysiak, M., Han, B., Chen, D., Piner, R.D., Colombo, L., Ruoff, R.S.: Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9(12), 4359 (2009)

    Article  ADS  Google Scholar 

  73. Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J.H., Kim, P., Choi, J.Y., Hong, B.H.: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230), 706 (2009)

    Article  ADS  Google Scholar 

  74. Meyer, J.C., Kisielowski, C., Erni, R., Rossell, M.D., Crommie, M.F., Zettl, A.: Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett. 8(11), 3582 (2008)

    Article  ADS  Google Scholar 

  75. Bangert, U., Gass, M.H., Bleloch, A.L., Nair, R.R., Eccles, J.: Nanotopography of graphene. Phys. Status Solidi A 206(9), 2115 (2009)

    Article  ADS  Google Scholar 

  76. Kimble, H.J.: The quantum internet. Nature 453(7198), 1023 (2008)

    Article  ADS  Google Scholar 

  77. Luo, L., Hayes, D., Manning, T.A., Matsukevich, D.N., Maunz, P., Olmschenk, S., Sterk, J.D., Monroe, C.: Protocols and techniques for a scalable atom-photon quantum network. Fortschr. Phys. 57(11–12), 1133 (2009)

    Article  MATH  Google Scholar 

  78. Maunz, P., Olmschenk, S., Hayes, D., Matsukevich, D., Duan, L.M., Monroe, C.: Heralded quantum gate between remote quantum memories. Phys. Rev. Lett. 102(25), 250502 (2009)

    Article  ADS  Google Scholar 

  79. Harlander, M., Brownnutt, M., Hnsel, W., Blatt, R.: Trapped-ion probing of light-induced charging effects on dielectrics. New J. Phys. 12(9), 93035 (2010)

    Article  Google Scholar 

  80. Wang, S.X., Low, G.Hao, Lachenmyer, N.S., Ge, Y., Herskind, P.F., Chuang, I.L.: Laser-induced charging of microfabricated ion traps. J. Appl. Phys. 110(10), 104901 (2011)

    Article  ADS  Google Scholar 

  81. Sterk, J., Luo, L., Manning, T., Maunz, P., Monroe, C.: Photon collection from a trapped ion-cavity system. Phys. Rev. A 85(6), 062308 (2012)

    Article  ADS  Google Scholar 

  82. Jechow, A., Streed, E.W., Norton, B.G., Petrasiunas, M.J., Kielpinski, D.: Wavelength-scale imaging of trapped ions using a phase Fresnel lens. Opt. Lett. 36(8), 1371 (2011)

    Article  ADS  Google Scholar 

  83. Streed, E., Norton, B., Jechow, A., Weinhold, T., Kielpinski, D.: Imaging of trapped ions with a microfabricated optic for quantum information processing. Phys. Rev. Lett. 106(1), 010502 (2011)

    Article  ADS  Google Scholar 

  84. Herskind, P.F., Wang, S.X., Shi, M., Ge, Y., Cetina, M., Chuang, I.L.: Microfabricated surface ion trap on a high-finesse optical mirror. Opt. Lett. 36(16), 3045 (2011)

    Article  ADS  Google Scholar 

  85. Merrill, T.J., Volin, C., Landgren, D., Amini, J.M., Wright, K., Doret, S.Charles, Pai, C.S., Hayden, H., Killian, T., Faircloth, D., Brown, K.R., Harter, A.W., Slusher, R.E., Merrill, J.T.: Demonstration of integrated microscale optics in surface-electrode ion traps. New J. Phys. 13(10), 103005 (2011)

    Article  Google Scholar 

  86. VanDevender, A., Colombe, Y., Amini, J., Leibfried, D., Wineland, D.: Efficient fiber optic detection of trapped ion fluorescence. Phys. Rev. Lett. 105(02), 023001 (2010)

    Article  ADS  Google Scholar 

  87. Mehta, K.K., Bruzewicz, C.D., McConnell, R., Ram, R.J., Sage, J.M., Chiaverini, J.: Integrated optical addressing of an ion qubit. arXiv preprint arXiv:1510.05618 (2015)

  88. Guthöhrlein, G.R., Keller, M., Hayasaka, K., Lange, W., Walther, H.: A single ion as a nanoscopic probe of an optical field. Nature 414(6859), 49 (2001)

    Article  ADS  Google Scholar 

  89. Mundt, A., Kreuter, A., Becher, C., Leibfried, D., Eschner, J., Schmidt-Kaler, F., Blatt, R.: Coupling a single atomic quantum bit to a high finesse optical cavity. Phys. Rev. Lett. 89(10), 103001 (2002)

    Article  ADS  Google Scholar 

  90. Stute, A., Casabone, B., Brandstätter, B., Habicher, D., Barros, H.G., Schmidt, P.O., Northup, T.E., Blatt, R.: Toward an ion-photon quantum interface in an optical cavity. Appl. Phys. B 107(4), 1145 (2012)

    Article  ADS  Google Scholar 

  91. Herskind, P.F., Dantan, A., Marler, J.P., Albert, M., Drewsen, M.: Realization of collective strong coupling with ion Coulomb crystals in an optical cavity. Nat. Phys. 5(7), 494 (2009)

    Article  Google Scholar 

  92. Steiner, M., Meyer, H.M., Deutsch, C., Reichel, J., Köhl, M.: Single ion coupled to an optical fiber cavity. Phys. Rev. Lett. 110(4), 043003 (2013)

    Article  ADS  Google Scholar 

  93. Tanji-Suzuki, H., Leroux, I.: Interaction between atomic ensembles and optical resonators: classical description. Adv. Atomic Mol. Opt. Phys. 60, 201 (2011)

    Article  ADS  Google Scholar 

  94. Siegman, A.E.: Lasers. University Science Books, Mill Valley, CA (1986)

    Google Scholar 

  95. Brady, G.R., Ellis, A.R., Moehring, D.L., Stick, D., Highstrete, C., Fortier, K.M., Blain, M.G., Haltli, R.A., Cruz-Cabrera, A.A., Briggs, R.D., Wendt, J.R., Carter, T.R., Samora, S., Kemme, S.A.: Integration of fluorescence collection optics with a microfabricated surface electrode ion trap. Appl. Phys. B 103(4), 801 (2011)

    Article  ADS  Google Scholar 

  96. Brewer, R., DeVoe, R., Kallenbach, R.: Planar ion microtraps. Phys. Rev. A 46(11), R6781 (1992)

    Article  ADS  Google Scholar 

  97. Kim, T.H., Herskind, P.F., Kim, T., Kim, J., Chuang, I.L.: Surface-electrode point Paul trap. Phys. Rev. A 82(4), 043412 (2010)

    Article  ADS  Google Scholar 

  98. Berkeland, D., Miller, J.: Minimization of ion micromotion in a Paul trap. J. Appl. Phys. 83(10), 5025 (1998)

    Article  ADS  Google Scholar 

  99. Herskind, P.F., Dantan, A., Albert, M., Marler, J.P., Drewsen, M.: Positioning of the rf potential minimum line of a linear Paul trap with micrometer precision. J. Phys. B At. Mol. Opt. Phys. 42(15), 154008 (2009)

    Article  ADS  Google Scholar 

  100. Stute, A., Casabone, B., Schindler, P., Monz, T., Schmidt, P.O., Brandstätter, B., Northup, T.E., Blatt, R.: Tunable ion-photon entanglement in an optical cavity. Nature 485(7399), 482 (2012)

    Article  ADS  Google Scholar 

  101. Takahashi, H., Wilson, A., Riley-Watson, A., Oručević, F., Seymour-Smith, N., Keller, M., Lange, W.: An integrated fiber trap for single-ion photonics. New J. Phys. 15(5), 053011 (2013)

    Article  ADS  Google Scholar 

  102. Colombe, Y., Steinmetz, T., Dubois, G., Linke, F., Hunger, D., Reichel, J.: Strong atom-field coupling for Bose–Einstein condensates in an optical cavity on a chip. Nature 450(7167), 272 (2007)

    Article  ADS  Google Scholar 

  103. Brandstätter, B., McClung, A., Schüppert, K., Casabone, B., Friebe, K., Stute, A., Schmidt, P.O., Deutsch, C., Reichel, J., Blatt, R., Northup, T.E.: Integrated fiber-mirror ion trap for strong ion-cavity coupling. Rev. Sci. Instrum. 84(12), 123104 (2013)

    Article  ADS  Google Scholar 

  104. Noek, R., Knoernschild, C., Migacz, J., Kim, T., Maunz, P., Merrill, T., Hayden, H., Pai, C.S., Kim, J.: Multiscale optics for enhanced light collection from a point source. Opt. Lett. 35(14), 2460 (2010)

    Article  ADS  Google Scholar 

  105. Kim, H., Pique, A., Horwitz, J.S., Mattoussi, H., Murata, H., Kafafi, Z.H., Chrisey, D.B.: Indium tin oxide thin films for organic light-emitting devices. Appl. Phys. Lett. 74(23), 3444 (1999)

    Article  ADS  Google Scholar 

  106. McKay, K.S., Kim, J., Hogue, H.H.: Enhanced quantum efficiency of the visible light photon counter in the ultraviolet wavelengths. Opt. Express 17(9), 7458 (2009)

    Article  ADS  Google Scholar 

  107. Hucul, D., Inlek, I.V., Vittorini, G., Crocker, C., Debnath, S., Clark, S.M., Monroe, C.: Modular entanglement of atomic qubits using photons and phonons. Nat. Phys. 11(1), 37 (2014)

    Article  Google Scholar 

  108. Shu, G., Dietrich, M.R., Kurz, N., Blinov, B.B.: Trapped ion imaging with a high numerical aperture spherical mirror. J. Phys. B At. Mol. Opt. Phys. 42(15), 154005 (2009)

    Article  ADS  Google Scholar 

  109. Shu, G., Chou, C.K., Kurz, N., Dietrich, M.R., Blinov, B.B.: Efficient fluorescence collection and ion imaging with the tack ion trap. J. Opt. Soc. Am. B 28(12), 2865 (2011)

    Article  ADS  Google Scholar 

  110. Maiwald, R., Golla, A., Fischer, M., Bader, M., Heugel, S., Chalopin, B., Sondermann, M., Leuchs, G.: Collecting more than half the fluorescence photons from a single ion. Phys. Rev. A 86(4), 043431 (2012)

    Article  ADS  Google Scholar 

  111. Hunger, D., Steinmetz, T., Colombe, Y., Deutsch, C., Hänsch, T.W., Reichel, J.: A fiber Fabry–Perot cavity with high finesse. New J. Phys. 12(6), 065038 (2010)

    Article  ADS  Google Scholar 

  112. Thompson, R.J., Rempe, G., Kimble, H.J.: Observation of normal-mode splitting for an atom in an optical cavity. Phys. Rev. Lett. 68(8), 1132 (1992)

    Article  ADS  Google Scholar 

  113. Keller, M., Lange, B., Hayasaka, K.K., Lange, W., Walther, H.: Continuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature 431(28), 1075 (2004)

    Article  ADS  Google Scholar 

  114. Barros, H.G., Stute, A., Northup, T.E., Russo, C., Schmidt, P.O., Blatt, R.: Deterministic single-photon source from a single ion. New J. Phys. 11(10), 103004 (2009)

    Article  ADS  Google Scholar 

  115. Albert, M., Dantan, A.A., Drewsen, M.: Cavity electromagnetically induced transparency and all-optical switching using ion Coulomb crystals. Nat. Photonics 5(10), 633 (2011)

    Article  ADS  Google Scholar 

  116. Home, J.P., Hanneke, D., Jost, J.D., Amini, J.M., Leibfried, D., Wineland, D.J.: Complete methods set for scalable ion trap quantum information processing. Science 325(5945), 1227 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  117. Cetina, M., Grier, A., Campbell, J., Chuang, I., Vuletić, V.: Bright source of cold ions for surface-electrode traps. Phys. Rev. A 76(041401), 041401(R) (2007)

    Article  ADS  Google Scholar 

  118. Sage, J.M., Kerman, A.J., Chiaverini, J.: Loading of a surface-electrode ion trap from a remote, precooled source. Phys. Rev. A 86(1), 013417 (2012)

    Article  ADS  Google Scholar 

  119. Lamata, L., Leibrandt, D., Chuang, I., Cirac, J., Lukin, M., Vuletić, V., Yelin, S.: Ion crystal transducer for strong coupling between single ions and single photons. Phys. Rev. Lett. 107(3), 030501 (2011)

    Article  ADS  Google Scholar 

  120. Horak, P., Hechenblaikner, G., Gheri, K., Stecher, H., Ritsch, H.: Cavity-induced atom cooling in the strong coupling regime. Phys. Rev. Lett. 79(25), 4974 (1997)

    Article  ADS  Google Scholar 

  121. Vuletić, V., Chu, S.: Laser cooling of atoms, ions, or molecules by coherent scattering. Phys. Rev. Lett. 84(17), 3787 (2000)

    Article  ADS  Google Scholar 

  122. Hänsch, T., Schawlow, A.: Cooling of gases by laser radiation. Opt. Commun. 13(1), 68 (1975)

    Article  ADS  Google Scholar 

  123. Leibrandt, D., Labaziewicz, J., Vuletić, V., Chuang, I.: Cavity sideband cooling of a single trapped ion. Phys. Rev. Lett. 103(10), 103001 (2009)

    Article  ADS  Google Scholar 

  124. Vuletić, V., Chan, H., Black, A.: Three-dimensional cavity Doppler cooling and cavity sideband cooling by coherent scattering. Phys. Rev. A 64(3), 033405 (2001)

    Article  ADS  Google Scholar 

  125. Maunz, P., Puppe, T., Schuster, I., Syassen, N., Pinkse, P.W.H., Rempe, G.: Cavity cooling of a single atom. Nature 428(6978), 50 (2004)

    Article  ADS  Google Scholar 

  126. Nußmann, S., Hijlkema, M., Weber, B., Rohde, F., Rempe, G., Kuhn, A.: Submicron positioning of single atoms in a microcavity. Phys. Rev. Lett. 95(17), 173602 (2005)

    Article  ADS  Google Scholar 

  127. Fortier, K., Kim, S., Gibbons, M., Ahmadi, P., Chapman, M.: Deterministic loading of individual atoms to a high-finesse optical cavity. Phys. Rev. Lett. 98(23), 233601 (2007)

    Article  ADS  Google Scholar 

  128. Chan, H., Black, A., Vuletić, V.: Observation of collective-emission-induced cooling of atoms in an optical cavity. Phys. Rev. Lett. 90(6), 063003 (2003)

    Article  ADS  Google Scholar 

  129. Black, A., Chan, H., Vuletić, V.: Observation of collective friction forces due to spatial self-organization of atoms: from Rayleigh to Bragg scattering. Phys. Rev. Lett. 91(20), 203001 (2003)

    Article  ADS  Google Scholar 

  130. Shi, M., Herskind, P.F., Drewsen, M., Chuang, I.L.: Microwave quantum logic spectroscopy and control of molecular ions. New J. Phys. 15(11), 113019 (2013)

    Article  ADS  Google Scholar 

  131. Metodi, T., Thaker, D., Cross, A.: A quantum logic array microarchitecture: scalable quantum data movement and computation. In: 38th Annual IEEE/ACM International Symposium on Microarchitecture, pp. 305–318 (2005)

  132. Grimm, R., Weidemüller, M., Ovchinnikov, Y.B.: Optical dipole traps for neutral atoms. Adv. At. Mol. Opt. Phys. 42, 95 (2000)

    Article  ADS  Google Scholar 

  133. Schneider, C., Enderlein, M., Huber, T., Schaetz, T.: Optical trapping of an ion. Nat. Photonics 4(11), 772 (2010)

    Article  ADS  Google Scholar 

  134. Linnet, R.B., Leroux, I.D., Marciante, M., Dantan, A., Drewsen, M.: Pinning an ion with an intracavity optical lattice. Phys. Rev. Lett. 109(23), 233005 (2012)

    Article  ADS  Google Scholar 

  135. Karpa, L., Bylinskii, A., Gangloff, D., Cetina, M., Vuletić, V.: Suppression of ion transport due to long-lived subwavelength localization by an optical lattice. Phys. Rev. Lett. 111(16), 163002 (2013)

    Article  ADS  Google Scholar 

  136. Huber, T., Lambrecht, A., Schmidt, J., Karpa, L., Schaetz, T.: A far-off-resonance optical trap for a Ba(+) ion. Nat. Commun. 5, 5587 (2014)

    Article  ADS  Google Scholar 

  137. Enderlein, M., Huber, T., Schneider, C., Schaetz, T.: Single ions trapped in a one-dimensional optical lattice. Phys. Rev. Lett. 109(23), 233004 (2012)

    Article  ADS  Google Scholar 

  138. Savard, T., OHara, K., Thomas, J.: Laser-noise-induced heating in far-off resonance optical traps. Phys. Rev. A 56(2), R1095 (1997)

    Article  ADS  Google Scholar 

  139. Bylinskii, A., Gangloff, D., Vuletić, V.: Tuning friction atom-by-atom in an ion-crystal simulator. Science 348(6239), 1115 (2015). doi:10.1126/science.1261422

    Article  ADS  Google Scholar 

  140. Britton, J., Leibfried, D., Beall, J.A., Blakestad, R.B., Wesenberg, J.H., Wineland, D.J.: Scalable arrays of rf Paul traps in degenerate Si. Appl. Phys. Lett. 95(17), 173102 (2009)

    Article  ADS  Google Scholar 

  141. Chen, C.Y.: Ultrasensitive isotope trace analyses with a magneto-optical trap. Science 286(5442), 1139 (1999). doi:10.1126/science.286.5442.1139

    Article  Google Scholar 

  142. Rushton, J.A., Aldous, M., Himsworth, M.D.: Contributed review: the feasibility of a fully miniaturized magneto-optical trap for portable ultracold quantum technology. Rev. Sci. Instrum. 85(12), 121501 (2014)

    Article  ADS  Google Scholar 

  143. Cetina, M., Grier, A.T., Vuletić, V.: Micromotion-induced limit to atom-ion sympathetic cooling in Paul traps. Phys. Rev. Lett. 109(25), 253201 (2012)

    Article  ADS  Google Scholar 

  144. Daley, A., Fedichev, P., Zoller, P.: Single-atom cooling by superfluid immersion: a nondestructive method for qubits. Phys. Rev. A 69(2), 022306 (2004)

    Article  ADS  Google Scholar 

  145. Zipkes, C., Palzer, S., Sias, C., Köhl, M.: A trapped single ion inside a Bose–Einstein condensate. Nature 464(7287), 388 (2010)

    Article  ADS  Google Scholar 

  146. Idziaszek, Z., Calarco, T., Zoller, P.: Controlled collisions of a single atom and an ion guided by movable trapping potentials. Phys. Rev. A 76(3), 033409 (2007)

    Article  ADS  Google Scholar 

  147. Jaksch, D., Zoller, P.: The cold atom Hubbard toolbox. Ann. Phys. 315(1), 52 (2005)

    Article  ADS  MATH  Google Scholar 

  148. Bakr, W.S., Gillen, J.I., Peng, A., Fölling, S., Greiner, M.: A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature 462(7269), 74 (2009)

    Article  ADS  Google Scholar 

  149. Doerk, H., Idziaszek, Z., Calarco, T.: Atom-ion quantum gate. Phys. Rev. A 81(1), 012708 (2010)

    Article  ADS  Google Scholar 

  150. Grier, A., Cetina, M., Oručević, F., Vuletić, V.: Observation of cold collisions between trapped ions and trapped atoms. Phys. Rev. Lett. 102(22), 223201 (2009)

    Article  ADS  Google Scholar 

  151. Leibrandt, D., Labaziewicz, J.: Demonstration of a scalable, multiplexed ion trap for quantum information processing. Quantum Inf. Comput. 9(11), 901 (2009)

    Google Scholar 

  152. Stick, D., Fortier, K.M., Haltli, R., Highstrete, C., Moehring, D.L., Tigges, C., Blain, M.G.: Demonstration of a microfabricated surface electrode ion trap. arXiv:1008.0990 (2010)

  153. Britton, J.: Microfabrication techniques for trapped ion quantum information processing. Ph.D., University of Colorado at Boulder (2008)

  154. Allcock, D.T.C., Harty, T.P., Janacek, H.A., Linke, N.M., Ballance, C.J., Steane, A.M., Lucas, D.M., Jarecki, R.L., Habermehl, S.D., Blain, M.G., Stick, D., Moehring, D.L.: Heating rate and electrode charging measurements in a scalable, microfabricated, surface-electrode ion trap. Appl. Phys. B 107(4), 913 (2011)

    Article  ADS  Google Scholar 

  155. Wilpers, G., See, P., Gill, P., Sinclair, A.G.: A monolithic array of three-dimensional ion traps fabricated with conventional semiconductor technology. Nat. Nanotechnol. 7(9), 572 (2012)

    Article  ADS  Google Scholar 

  156. Wright, K., Amini, J.M., Faircloth, D.L., Volin, C., Doret, S.Charles, Hayden, H., Pai, C.S., Landgren, D.W., Denison, D., Killian, T., Slusher, R.E., Harter, A.W.: Reliable transport through a microfabricated X -junction surface-electrode ion trap. New J. Phys. 15(3), 033004 (2013)

    Article  ADS  Google Scholar 

  157. Sterling, R.C., Rattanasonti, H., Weidt, S., Lake, K., Srinivasan, P., Webster, S.C., Kraft, M., Hensinger, W.K.: Fabrication and operation of a two-dimensional ion-trap lattice on a high-voltage microchip. Nat. Commun. 5, 3637 (2014)

    Article  ADS  Google Scholar 

  158. Niedermayr, M., Lakhmanskiy, K., Kumph, M., Partel, S., Edlinger, J., Brownnutt, M., Blatt, R.: Cryogenic surface ion trap based on intrinsic silicon. New J. Phys. 16(11), 113068 (2014)

    Article  ADS  Google Scholar 

  159. Mehta, K.K., Eltony, A.M., Bruzewicz, C.D., Chuang, I.L., Ram, R.J., Sage, J.M., Chiaverini, J.: Ion traps fabricated in a CMOS foundry. Appl. Phys. Lett. 105(4), 044103 (2014)

    Article  ADS  Google Scholar 

  160. Field, R.M., Lary, J., Cohn, J., Paninski, L., Shepard, K.L.: A low-noise, single-photon avalanche diode in standard \(0.13\,\mu {\rm m}\) complementary metal-oxide-semiconductor process. Appl. Phys. Lett. 97(21), 211111 (2010)

  161. Orcutt, J.S., Moss, B., Sun, C., Leu, J., Georgas, M., Shainline, J., Zgraggen, E., Li, H., Sun, J., Weaver, M., Urošević, S., Popović, M., Ram, R.J., Stojanović, V.: Open foundry platform for high-performance electronic-photonic integration. Opt. Express 20(11), 12222 (2012)

    Article  ADS  Google Scholar 

  162. André, A., DeMille, D., Doyle, J.M., Lukin, M.D., Maxwell, S.E., Rabl, P., Schoelkopf, R.J., Zoller, P.: A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators. Nat. Phys. 2(9), 636 (2006)

    Article  Google Scholar 

  163. Brown, K.R., Wilson, A.C., Colombe, Y., Ospelkaus, C., Meier, A.M., Knill, E., Leibfried, D., Wineland, D.J.: Single-qubit-gate error below \(10^{-4}\) in a trapped ion. Phys. Rev. A 84(3), 030303 (2011)

    Article  ADS  Google Scholar 

  164. Warring, U., Ospelkaus, C., Colombe, Y., Brown, K., Amini, J., Carsjens, M., Leibfried, D., Wineland, D.: Techniques for microwave near-field quantum control of trapped ions. Phys. Rev. A 87(1), 013437 (2013)

    Article  ADS  Google Scholar 

  165. Allcock, D.T.C., Harty, T.P., Ballance, C.J., Keitch, B.C., Linke, N.M., Stacey, D.N., Lucas, D.M.: A microfabricated ion trap with integrated microwave circuitry. Appl. Phys. Lett. 102(4), 044103 (2013)

    Article  ADS  Google Scholar 

  166. Weidt, S., Randall, J., Webster, S.C., Standing, E.D., Rodriguez, A., Webb, A.E., Lekitsch, B., Hensinger, W.K.: Ground-State cooling of a trapped ion using long-wavelength radiation. Phys. Rev. Lett. 115(1), 013002 (2015)

    Article  ADS  Google Scholar 

  167. Schmied, R., Roscilde, T., Murg, V., Porras, D., Cirac, J.I.: Quantum phases of trapped ions in an optical lattice. New J. Phys. 10(4), 045017 (2008)

    Article  ADS  Google Scholar 

  168. Bermudez, A., Schaetz, T., Porras, D.: Synthetic gauge fields for vibrational excitations of trapped ions. Phys. Rev. Lett. 107(15), 150501 (2011)

    Article  ADS  Google Scholar 

  169. Ritter, S., Nölleke, C., Hahn, C., Reiserer, A., Neuzner, A., Uphoff, M., Mücke, M., Figueroa, E., Bochmann, J., Rempe, G.: An elementary quantum network of single atoms in optical cavities. Nature 484(7393), 195 (2012)

    Article  ADS  Google Scholar 

  170. Orcutt, J.S., Khilo, A., Holzwarth, C.W., Popović, M.A., Li, H., Sun, J., Bonifield, T., Hollingsworth, R., Kärtner, F.X., Smith, H.I., Stojanović, V., Ram, R.J.: Nanophotonic integration in state-of-the-art CMOS foundries. Opt. Express 19(3), 2335 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge support from the MQCO Program with funding from IARPA, the Quest program with funding from DARPA, the Air Force Office of Scientific Research MURI on Ultracold Molecules, and the NSF Center for Ultracold Atoms. AME, DG, and AB also gratefully acknowledge the support of the National Science and Engineering Research Council of Canada’s Postgraduate Scholarship program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amira M. Eltony.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eltony, A.M., Gangloff, D., Shi, M. et al. Technologies for trapped-ion quantum information systems. Quantum Inf Process 15, 5351–5383 (2016). https://doi.org/10.1007/s11128-016-1298-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1298-8

Keywords

Navigation