Skip to main content
Log in

Upper bound on singlet fraction of two-qubit mixed entangled states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We demonstrate a new method to achieve the maximum singlet fraction using an entangled mixed two-qubit state as a resource. For this, we establish a tight upper bound on singlet fraction and show that the maximal singlet fraction obtained in Verstraete and Verschelde (Phys Rev Lett 90:097901(1)–097901(4), 2003) does not attain the upper bound on the singlet fraction derived here. Interestingly, we found that the required upper bound can, in fact, be achieved using local filtering operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    Article  ADS  MATH  Google Scholar 

  2. Schrodinger, E.: Die gegenwärtige situation in der quantenmechanik. Naturwissenschaften 23, 807–812 (1935)

    Article  ADS  MATH  Google Scholar 

  3. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bennett, C.H., Wiesner, S.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Broadfoot, S., Dorner, U., Jaksch, D.: Entanglement percolation with bipartite mixed states. Eur. Phys. Lett. 88, 50002 (2009)

    Article  ADS  Google Scholar 

  7. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2009)

    Article  ADS  Google Scholar 

  8. Zanardi, P., Lloyd, S.: Topological protection and quantum noiseless subsystems. Phys. Rev. Lett. 90, 067902 (1)–067902 (4) (2003)

    Article  ADS  Google Scholar 

  9. Duan, L.M., Guo, G.C.: Preserving coherence in quantum computation by pairing quantum bits. Phys. Rev. Lett. 79, 1953–1956 (1997)

    Article  ADS  Google Scholar 

  10. Verstraete, F., Verschelde, H.: Optimal teleportation with a mixed state of two qubits. Phys. Rev. Lett. 90, 097901(1)–097901(4) (2003)

    Article  ADS  Google Scholar 

  11. Horodecki, M., Horodecki, P., Horodecki, R.: General teleportation channel, singlet fraction, and quasidistillation. Phys. Rev. A 60, 1888–1898 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Taketani, B.G., de Melo, F., de Matos Filho, R.L.: Optimal teleportation with a noisy source. Phys. Rev. A 85, 020301(R) (2012)

    Article  ADS  Google Scholar 

  13. de Beaudrap, N., Ohliger, M., Osborne, T.J., Eisert, J.: Solving frustration-free spin systems. Phys. Rev. Lett. 105, 060504(1)–060504(1) (2010)

    Article  Google Scholar 

  14. Burkard, G.: Spin-entangled electrons in solid-state systems. J. Phys. Condens. Matter 19, 233202 (2007)

    Article  ADS  Google Scholar 

  15. Simmons, S., et al.: Entanglement in a solid-state spin ensemble. Nature 470, 69–72 (2011)

    Article  ADS  Google Scholar 

  16. Clark, S.G., Parkins, A.S.: Entanglement and entropy engineering of atomic two-qubit states. Phys. Rev. Lett. 90, 047905 (1)–047905 (4) (2003)

    Article  ADS  Google Scholar 

  17. Cai, J., Guerreschi, G.G., Briegel, H.J.: Quantum control and entanglement in a chemical compass. Phys. Rev. Lett. 104, 220502 (1)–220502 (4) (2010)

    Article  ADS  Google Scholar 

  18. Fang, Y., Loparo, K.A., Feng, X.: Inequalities for the trace of matrix product. IEEE Trans. Autom. Control 39, 2489–2490 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dembo, A.: Bounds on the extreme eigenvalues of positive-definite Toeplitz matrices. IEEE Trans. Inform. Theory 34, 352–355 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Park, D., Lee, B.G.: On determining upper bounds of maximal eigenvalue of Hermitian positive-Definite Matrix. IEEE Signal Process. Lett. 10, 267–269 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adhikari, S., Kumar, A. Upper bound on singlet fraction of two-qubit mixed entangled states. Quantum Inf Process 15, 2797–2803 (2016). https://doi.org/10.1007/s11128-016-1295-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1295-y

Keywords

Navigation