Skip to main content
Log in

Controlled quantum secure direct communication by entanglement distillation or generalized measurement

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose two controlled quantum secure communication schemes by entanglement distillation or generalized measurement. The sender Alice, the receiver Bob and the controllers David and Cliff take part in the whole schemes. The supervisors David and Cliff can control the information transmitted from Alice to Bob by adjusting the local measurement angles \(\theta _4\) and \(\theta _3\). Bob can verify his secret information by classical one-way function after communication. The average amount of information is analyzed and compared for these two methods by MATLAB. The generalized measurement is a better scheme. Our schemes are secure against some well-known attacks because classical encryption and decoy states are used to ensure the security of the classical channel and the quantum channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  2. Xiu, X.M., Dong, H.K., Li, D., Gao, Y.J., Chi, F.: Deterministic secure quantum communication using four-particle genuine entangled state and entangled swapping. Opt. Commun. 282, 2457–2459 (2009)

    Article  ADS  MATH  Google Scholar 

  3. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  4. Chou, Y.H., Lin, Y.T., Zeng, G.J., Lin, F.J., Chen, C.Y.: Controlled bidirectional quantum secure direct communication. Sci. World J. 2014, 694678 (2014)

    Article  Google Scholar 

  5. Li, Y.H., Li, X.L., Sang, M.H., Nie, Y.Y., Wang, Z.S.: Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state. Quantum Inf. Process 12, 3835–3844 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Li, D., Xiu, X.M., Gao, Y.J., Ren, Y.P., Liu, H.W.: Controlled three-party communication using GHZ-like state and imperfect Bell-state measurement. Opt. Commun. 284, 905–908 (2011)

    Article  ADS  Google Scholar 

  7. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Opt. Commun. 283, 192–195 (2010)

    Article  ADS  Google Scholar 

  8. Shima, H., Monireh, H.: Efficient controlled quantum secure direct communication based on GHZ-like states. Quantum Inf. Process 14, 739–753 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang, J., Zhang, Q., Tang, C.J.: Multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Opt. Commun. 266, 732–737 (2006)

    Article  ADS  Google Scholar 

  10. Kao, S.H., Hwang, T.: Multiparty controlled quantumsecure direct communication based on quantum search algorithm. Quantum Inf. Process 12, 3791–3805 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Patwardhan, S., Moulick, S.R., Prasanta K.: Panigrahi Efficient Controlled Quantum Secure Direct Communication Protocols. arXiv:1509.05882v2

  12. Li, X.H., Zhou, P., Liang, Y.J., Li, C.Y., Zhou, H.Y., Deng, F.G.: Quantum secure direct communication network with two-step protocol. Chin. Phys. Lett. 23, 1080–1083 (2006)

    Article  ADS  Google Scholar 

  13. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  14. Wang, J., Zhang, Q., Tang, C.J.: Quantum secure communication scheme with W state. Commun. Theor. Phys. 48, 637–640 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  15. Nguyen, B.A.: Efficient semi-direct three-party quantum secure exchange of information. Phys. Lett. A 360, 518–521 (2007)

    Article  MATH  Google Scholar 

  16. Liu, Z.H., Chen, H.W., Liu, W.J., Xu, J., Wang, D., Li, Z.Q.: Quantum secure direct communication with optimal quantum superdense coding by using general four-qubit states. Quantum Inf. Process 12, 587–599 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Cao, W.F., Yang, Y.G., Wen, Q.Y.: Quantum secure direct communication with cluster states. Phys. Mech. Astron. 53, 1271–1275 (2010)

    Article  Google Scholar 

  18. Sun, Z.W., Du, R.G., Long, D.Y.: Quantum secure direct communication with two-photon four-qubit cluster states. Int. J. Theor. Phys. 51, 1946–1952 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bennett, C.H., Stephen, J.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phy. Rev. Lett. 69, 2881–2884 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Mattle, K., Weifurter, H., Kwiat, P.G., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656–4659 (1996)

    Article  ADS  Google Scholar 

  21. Hausladen, P., Jozsa, R., Schumacher, B., Westmoreland, M., Wotters, W.K.: Classical information capacity of a quantum channel. Phys. Rev. A 54, 1869–1876 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  22. Liu, X.S., Long, G.L., Tong, D.M., Li, F.: General scheme for superdense coding between multiparties. Phys. Rev. A 65, 022304 (2002)

    Article  ADS  Google Scholar 

  23. Fu, C.B., Xia, Y., Liu, B.X., Zhou, S.: Controlled quantum dense coding in a four-particle non-maximally entangled state via local measurement. J. Korean Phys. Soc. 46, 1080–1082 (2005)

    Google Scholar 

  24. Li, S.S.: Dense coding with cluster state via local measurement. Int. J. Theor. Phys. 51, 724–730 (2012)

    Article  MATH  Google Scholar 

  25. Huang, J., Huang, G.Q.: Dense coding with extended GHZ-W state via local measurements. Int. J. Theor. Phys. 50, 2842–2849 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yi, X.J., Wang, J.M., Huang, G.Q.: Controlled dense coding using generalized GHZ-type state. Int. J. Theor. Phys. 49, 376–383 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Braunstein, S.L., Kimble, H.J.: Dense coding for continuous variables. Phys. Rev. A 61, 042302 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  28. Grudka, A., Wojcik, A.: Symmetric scheme for superdense coding between multiparties. Phys. Rev. A 66, 014301 (2002)

    Article  ADS  Google Scholar 

  29. Zhang, Z.J., Man, Z.X., Li, Y.: Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations. Chin. Phys. Lett. 22, 18–21 (2005)

    Article  ADS  Google Scholar 

  30. Hao, J.C., Li, C.F., Guo, G.C.: Controlled dense coding using the Greenberger–Horne–Zeilinger state. Phys. Rev. A 63, 054301 (2001)

    Article  ADS  Google Scholar 

  31. Huang, Y.B., Li, S.S., Nie, Y.Y.: Controlled dense coding between multi-parties. Int. J. Theor. Phys. 48, 95–100 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Jiang, D.Y., Wu, R.S., Li, S.S., Wang, Z.S.: Controlled dense coding with symmetric state. Int. J. Theor. Phys. 48, 2297–2304 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Bernstein, D.J., Buchmann, J., Dahmen, E.: Post-Quantum Cryptography. Springer, NewYork (2009)

    Book  MATH  Google Scholar 

  34. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Proc. IEEE Int. Conf. Comput. Syst. Signal Process. 175, 175–179 (1984)

    MathSciNet  MATH  Google Scholar 

  35. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Wang, X.B.: Fault tolerant quantum key distribution protocol with collective random unitary noise. Phys. Rev. A 72, 050304 (2005)

    Article  ADS  Google Scholar 

  37. Tan, X.Q., Jiang, L.X.: Improved three-party quantum secret sharing based on bell states. Int. J. Theor. Phys. 52, 3577–3585 (2013)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The research is funded by National Natural Science Foundation of China, under Grant Nos. 61472165, 61401176 and 61502200, and Science and Technology Planning Project of Guangdong Province, China, under Grant Nos. 2013B010401018, 2014B090903008, 2015B010109006 and 2015B010128008, and Natural Science Foundation of Guangdong Province, China, under Grant No. 2014A030310245.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqing Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, X., Zhang, X. Controlled quantum secure direct communication by entanglement distillation or generalized measurement. Quantum Inf Process 15, 2137–2154 (2016). https://doi.org/10.1007/s11128-016-1268-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1268-1

Keywords

Navigation