Skip to main content
Log in

An algorithm based on negative probabilities for a separability criterion

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Here, we demonstrate that entangled states can be written as separable states [\(\rho _{1\ldots N}=\sum _{i}p_{i}\rho _{i}^{(1)}\otimes \cdots \otimes \rho _{i}^{(N)}\), 1 to N refering to the parts and \(p_{i}\) to the nonnegative probabilities], although for some of the coefficients, \(p_{i}\) assume negative values, while others are larger than 1 such to keep their sum equal to 1. We recognize this feature as a signature of non-separability or pseudoseparability. We systematize that kind of decomposition through an algorithm for the explicit separation of density matrices, and we apply it to illustrate the separation of some particular bipartite and tripartite states, including a multipartite \( {\textstyle \bigotimes \nolimits ^{N}} 2\) one-parameter Werner-like state. We also work out an arbitrary bipartite \(2\times 2\) state and show that in the particular case where this state reduces to an X-type density matrix, our algorithm leads to the separability conditions on the parameters, confirmed by the Peres-Horodecki partial transposition recipe. We finally propose a measure for quantifying the degree of entanglement based on these peculiar negative (and greater than one) probabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Phys. (Long Island City, NY). 1, 195–200 (1964)

    Google Scholar 

  2. Aspect, A., Dalibard, J., Roger, G.: Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  3. Kwiat, P.G., Mattle, K., Weinfurter, H., Zeilinger, A., Sergienko, A.V., Shih, Y.: New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995)

    Article  ADS  Google Scholar 

  4. Hagley, E., Maître, X., Nogues, G., Wunderlich, C., Brune, M., Raimond, J.M., Haroche, S.: Generation of Einstein-Podolsky-Rosen pairs of atoms. Phys. Rev. Lett. 79, 1–5 (1997)

    Article  ADS  Google Scholar 

  5. King, B.E., Wood, C.S., Myatt, C.J., Turchette, Q.A., Leibfried, D., Itano, W.M., Monroe, C., Wineland, D.J.: Cooling the collective motion of trapped ions to initialize a quantum register. Phys. Rev. Lett. 81, 1525–1528 (1998)

    Article  ADS  Google Scholar 

  6. Turchette, Q.A., Wood, C.S., King, B.E., Myatt, C.J., Leibfried, D., Itano, W.M., Monroe, C., Wineland, D.J.: Deterministic entanglement of two trapped ions. Phys. Rev. Lett. 81, 3631–3634 (1998)

    Article  ADS  Google Scholar 

  7. Sackett, C.A., Kielpinski, D., King, B.E., Langer, C., Meyer, V., Myatt, C.J., Rowe, M., Turchette, Q.A., Itano, W.M., Wineland, D.J., Monroe, I.C.: Experimental entanglement of four particles. Nature 404, 256–259 (2000)

    Article  ADS  Google Scholar 

  8. Monz, T., Schindler, P., Barreiro, J.T., Chwalla, M., Nigg, D., Coish, W.A., Harlander, M., Hänsel, W., Hennrich, M., Blatt, R.: 14-Qubit entanglement: creation and coherence. Phys. Rev. Lett. 106, 130506 (2011)

    Article  ADS  Google Scholar 

  9. Rowe, M.A., Kielpinski, D., Meyer, V., Sackett, C.A., Itano, W.M., Monroe, C., Wineland, D.J.: Experimental violation of a Bell’s inequality with efficient detection. Nature 409, 791–794 (2001)

    Article  ADS  Google Scholar 

  10. Yu, T., Eberly, J.H.: Quantum open system theory: bipartite aspects. Phys. Rev. Lett. 97, 140403 (2006)

    Article  ADS  Google Scholar 

  11. Almeida, M.P., de Melo, F., Hor-Meyll, M., Salles, A., Walborn, S.P., Souto Ribeiro, P.H., Davidovich, L.: Environment-induced sudden death of entanglement. Science 316, 579–582 (2007)

    Article  ADS  Google Scholar 

  12. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  13. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413–1415 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. 223, 1–8 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Werner, R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)

    Article  ADS  Google Scholar 

  16. Popescu, S.: Bell’s inequalities versus teleportation: What is nonlocality? Phys. Rev. Lett. 72, 797–799 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Popescu, S.: Bell’s inequalities and density matrices: revealing hidden nonlocality. Phys. Rev. Lett. 74, 2619–2622 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Mermin, N.D.: In: Clifton, R.K. (ed.) Quantum Mechanics without Observer. Kluwer, Dordrecht, pp. 57–71 (1996)

  19. Gisin, N.: Hidden quantum nonlocality revealed by local filters. Phys. Lett. A 210, 151–156 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Gurvits, L.: In Proceedings of the Thirty-Fifth ACM Symposium on Theory of Computing, ACM Press, New York, Vol. 10 (2003)

  21. Gharibian, S.: Strong NP-hardness of the quantum separability problem. Quantum Inf. Comput. 10, 343–360 (2010a)

    MATH  MathSciNet  Google Scholar 

  22. Beigi, S.: NP vs QMA_log(2). Quantum Inf. Comput. 10, 141–151 (2010b)

  23. Ioannou, L.M.: Computational complexity of the quantum separability problem. Quantum Inf. Comput. 7, 335–370 (2007)

    MATH  MathSciNet  Google Scholar 

  24. Plenio, M.B., Virmani, S.: An introduction to entanglement measures. Quantum Inf. Comput. 7, 1–51 (2007)

    MATH  MathSciNet  Google Scholar 

  25. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Tóth, G., Gühne, O.: Entanglement and permutational symmetry. Phys. Rev. Lett. 102, 170503 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  27. Gühne, O., Seevinck, M.: Separability criteria for genuine multiparticle entanglement. New J. Phys. 12, 053002 (2010)

    Article  Google Scholar 

  28. Gaoa, T., Hong, Y.: Separability criteria for several classes of n-partite quantum states. Eur. Phys. J. D 61, 765–771 (2011)

    Article  ADS  Google Scholar 

  29. Hulpke, F., Bruss, D.: A two-way algorithm for the entanglement problem. J. Phys. A 38, 5573–5579 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. Brandão, F.G.S.L., Vianna, R.O.: Separable multipartite mixed states: operational asymptotically necessary and sufficient conditions. Phys. Rev. Lett. 93, 220503 (2004)

    Article  ADS  Google Scholar 

  31. Spedalieri, F.M.: Detecting separable states via semidefinite programs. Phys. Rev. A 76, 032318 (2007)

    Article  ADS  Google Scholar 

  32. Navascués, M., Owari, M., Plenio, M.B.: Complete criterion for separability detection. Phys. Rev. Lett. 103, 160404 (2009)

    Article  ADS  Google Scholar 

  33. Hiley, B.J., David Peat F. (eds.): Quantum Implications: Essays in Honour of David Bohm, chap. 13, p. 235. London: Routledge (1987). http://cds.cern.ch/record/154856/files/pre-27827

  34. Brandão, F.G.S.L., Christandl, M., Yard, J.: Faithful squashed entanglement. Commun. Math. Phys. 306, 805–830 (2011)

    Article  MATH  ADS  Google Scholar 

  35. Leonhard, U.: Quantum-state tomography and discrete Wigner function. Phys. Rev. Lett. 74, 4101–4104 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  36. Leonhard, U.: Discrete Wigner function and quantum-state tomography. Phys. Rev. A 53, 2998–3013 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  37. Franco, R., Penna, V.: Discrete Wigner distribution for two qubits: a characterization of entanglement properties. J. Phys. A Math. Gen. 39, 5907–5919 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. Puri, R.R.: A quasiprobability based criterion for classifying the states of N spin-s as classical or non-classical. J. Phys. A Math. Gen. 29, 5719–5726 (1996)

    Article  MATH  ADS  Google Scholar 

  39. Puri, R.R.: Quasiprobability-based criterion for classicality and separability of states of spin-1/2 particles. Phys. Rev. A 86, 052111 (2012)

    Article  ADS  Google Scholar 

  40. Scully, M.O., Walther, H., Schleich, W.: Feynman’s approach to negative probability in quantum mechanics. Phys. Rev. A 49, 1562–1566 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  41. Ryu, J., Lim, J., Hong, S., Lee, J.: Operational quasiprobabilities for qudits. Phys. Rev. A 88, 052123 (2013)

    Article  ADS  Google Scholar 

  42. Rudolph, O.: Some aspects of separability revisited. Phys. Lett. A 321, 239–243 (2004)

    Article  MATH  ADS  Google Scholar 

  43. Rudolph, O.: On the cross norm criterion for separability. J. Phys. A Math. Theory 36, 5825–5825 (2003a)

    Article  MathSciNet  ADS  Google Scholar 

  44. Rudolph, O.: Some properties of the computable cross norm criterion for separability. Phys. Rev. A 67, 032312 (2003b)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgments

We wish to express thanks to Professors F. C. Alcaraz, from IFSC, Universidade de São Paulo, and V. Rittenberg, from Bonn University, for useful discussions. We also recognize the financial support from FAPESP and CNPq, Brazilian agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Y. Moussa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Ponte, M.A., Mizrahi, S.S. & Moussa, M.H.Y. An algorithm based on negative probabilities for a separability criterion. Quantum Inf Process 14, 3351–3366 (2015). https://doi.org/10.1007/s11128-015-1053-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1053-6

Keywords

Navigation