Skip to main content
Log in

Robust quantum storage and retrieval in a hybrid system by controllable Stark-chirped rapid adiabatic passages

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum memory is one of the basic building blocks in large-scale quantum computers. In the paper, we propose a scheme to realize a quantum memory in a hybrid system by controllable Stark-chirped rapid adiabatic passages. In the hybrid system, by taking advantage of long coherence times in microscopic system, which is a two-level system naturally embedded in a current-biased Josephson junction, individual two-level system can be regarded as a quantum memory. The scheme of storage and retrieval is realized by Stark-chirped rapid adiabatic passages, which is insensitive to the details of the applied adiabatic pulses. In numerical investigation of the storage process using adiabatic master equations, we demonstrate that high-fidelity quantum memory can be achieved under practical noises. Finally, the experimental feasibility and performance are discussed based on the current experimental status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Makhlin, Y., Schon, G., Shnirman, A.: Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357 (2001)

    Article  ADS  Google Scholar 

  2. You, J.Q., Nori, F.: Superconducting circuits and quantum information. Phys. Today 58, 42–47 (2005)

    Article  Google Scholar 

  3. You, J.Q., Nori, F.: Atomic physics and quantum optics using superconducting circuits. Nature 474, 589–597 (2011)

    Article  ADS  Google Scholar 

  4. Buluta, I., Ashhab, S., Nori, F.: Natural and artificial atoms for quantum computation. Rep. Prog. Phys. 74, 104401 (2011)

    Article  ADS  Google Scholar 

  5. Xiang, Z.L., Ashhab, S., You, J.Q., Nori, F.: Hybrid quantum circuits: superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623 (2013)

    Article  ADS  Google Scholar 

  6. Wallquist, M., Hammerer, K., Rabl, P., Lukin, M., Zoller, P.: Hybrid quantum devices and quantum engineering. Phys. Scr. T137, 014001 (2009)

    Article  ADS  Google Scholar 

  7. Imamoglu, A.: Cavity QED based on collective magnetic dipole coupling: spin ensembles as hybrid two-level systems. Phys. Rev. Lett. 102, 083602 (2009)

    Article  ADS  Google Scholar 

  8. Petrosyan, D., et al.: Reversible state transfer between superconducting qubits and atomic ensembles. Phys. Rev. A 79, 040304(R) (2009)

    Article  ADS  Google Scholar 

  9. Li, D.C., Yuan, C.H., Cao, Z.L., Zhang, W.: Storage and retrieval of continuous-variable polarization-entangled cluster states in atomic ensembles. Phys. Rev. A 84, 022328 (2011)

    Article  ADS  Google Scholar 

  10. Yang, W.L., Yin, Z.Q., Hu, Y., Feng, M., Du, J.F.: High-fidelity quantum memory using nitrogen-vacancy center ensemble for hybrid quantum computation. Phys. Rev. A 84, 010301(R) (2011)

    Article  ADS  Google Scholar 

  11. Saito, S., et al.: Towards realizing a quantum memory for a superconducting qubit: storage and retrieval of quantum states. Phys. Rev. Lett. 111, 107008 (2013)

    Article  ADS  Google Scholar 

  12. Zhao, Y.J., Fang, X.M., Zhou, F., Song, K.H.: Scheme for realizing quantum-information storage and retrieval from quantum memory based on nitrogen-vacancy centers. Phys. Rev. A 86, 052325 (2012)

    Article  ADS  Google Scholar 

  13. Lü, X.Y., Xiang, Z.L., Cui, W., You, J.Q., Nori, F.: Quantum memory using a hybrid circuit with flux qubits and nitrogen-vacancy centers. Phys. Rev. A 88, 012329 (2013)

    Article  ADS  Google Scholar 

  14. Zhou, J., Hu, Y., Yin, Z.-Q., Wang, Z.D., Zhu, S.-L., Xue, Z.-Y.: High fidelity quantum state transfer in electromechanical systems with intermediate coupling. Sci. Rep. 4, 6237 (2014)

    Article  ADS  Google Scholar 

  15. Rabl, P., et al.: Hybrid quantum processors: molecular ensembles as quantum memory for solid state circuits. Phys. Rev. Lett. 97, 033003 (2006)

    Article  ADS  Google Scholar 

  16. Rabl, P., Zoller, P.: Molecular dipolar crystals as high-fidelity quantum memory for hybrid quantum computing. Phys. Rev. A 76, 042308 (2007)

    Article  ADS  Google Scholar 

  17. Simmonds, R.W., Lang, K.M., Hite, D.A., Nam, S., Pappas, D.P., Martinis, J.M.: Decoherence in Josephson phase qubits from junction resonators. Phys. Rev. Lett. 93, 077003 (2004)

    Article  ADS  Google Scholar 

  18. Cooper, K.B., Steffen, M., McDermott, R., Simmonds, R.W., Oh, S., Hite, D.A., Pappas, D.P., Martinis, J.M.: Observation of quantum oscillations between a Josephson phase qubit and a microscopic resonator using fast readout. Phys. Rev. Lett. 93, 180401 (2004)

    Article  ADS  Google Scholar 

  19. Bialczak, R.C., McDermott, R., Ansmann, M., Hofheinz, M., Katz, N., Lucero, E., Neeley, M., O’Connell, A.D., Wang, H., Cleland, A.N., Martinis, J.M.: 1/f Flux noise in Josephson phase qubits. Phys. Rev. Lett. 99, 187006 (2007)

    Article  ADS  Google Scholar 

  20. Shnirman, A., Schön, G., Martin, I., Makhlin, Y.: Low- and high-frequency noise from coherent two-level systems. Phys. Rev. Lett. 94, 127002 (2005)

    Article  ADS  Google Scholar 

  21. Martin, I., Bulaevskii, L., Shnirman, A.: Tunneling spectroscopy of two-level systems inside a Josephson junction. Phys. Rev. Lett. 95, 127002 (2005)

    Article  ADS  Google Scholar 

  22. Martinis, J.M., Cooper, K.B., McDermott, R., Steffen, M., Ansmann, M., Osborn, K.D., Cicak, K., Oh, S., Pappas, D.P., Simmonds, R.W., Yu, C.C.: Decoherence in Josephson qubits from dielectric loss. Phys. Rev. Lett. 95, 210503 (2005)

    Article  ADS  Google Scholar 

  23. Tian, L., Simmonds, R.W.: Josephson junction microscope for low-frequency fluctuators. Phys. Rev. Lett. 99, 137002 (2007)

    Article  ADS  Google Scholar 

  24. Constantin, M., Yu, C.C.: Microscopic model of critical current noise in Josephson junctions. Phys. Rev. Lett. 99, 207001 (2007)

    Article  ADS  Google Scholar 

  25. Ashhab, S., Johansson, J.R., Nori, F.: Decoherence dynamics of a qubit coupled to a quantum two-level system. Phys. C 444, 45–52 (2006)

    Article  ADS  Google Scholar 

  26. Ashhab, S., Johansson, J.R., Nori, F.: Rabi oscillations in a qubit coupled to a quantum two-level system. New J. Phys. 8, 103 (2006)

    Article  ADS  Google Scholar 

  27. Grabovskij, G.J., Peichl, T., Lisenfeld, J., Weiss, G., Ustinov, A.V.: Strain tuning of individual atomic tunneling systems detected by a superconducting qubit. Science 338, 232–234 (2012)

    Article  ADS  Google Scholar 

  28. Steffen, M., Ansmann, M., McDermott, R., Katz, N., Bialczak, R.C., Lucero, E., Neeley, M., Weig, E.M., Cleland, A.N., Martinis, J.M.: State tomography of capacitively shunted phase qubits with high fidelity. Phys. Rev. Lett. 97, 050502 (2006)

    Article  ADS  Google Scholar 

  29. Martinis, J.M., Nam, S., Aumentado, J., Lang, K.M., Urbina, C.: Decoherence of a superconducting qubit due to bias noise. Phys. Rev. B 67, 094510 (2003)

    Article  ADS  Google Scholar 

  30. Zagoskin, A.M., Ashhab, S., Johansson, J.R., Nori, F.: Quantum two-level systems in Josephson junctions as naturally formed qubits. Phys. Rev. Lett. 97, 077001 (2006)

    Article  ADS  Google Scholar 

  31. Tian, L., Jacobs, K.: Quantum manipulation of low-frequency fluctuators by superconducting resonator. Phys. Rev. B 79, 144503 (2009)

    Article  ADS  Google Scholar 

  32. Yu, Y., Zhu, S.L., Sun, G., Wen, X., Dong, N., Chen, J., Wu, P., Han, S.: Quantum jumps between macroscopic quantum states of a superconducting qubit coupled to a microscopic two-level system. Phys. Rev. Lett. 101, 157001 (2008)

    Article  ADS  Google Scholar 

  33. Sun, G., Wen, X., Mao, B., Chen, J., Yu, Y., Wu, P., Han, S.: Tunable quantum beam splitters for coherent manipulation of a solid-state tripartite qubit system. Nat. Commun. 1, 51 (2010)

    Article  ADS  Google Scholar 

  34. Neeley, M., Ansmann, M., Bialczak, R.C., Hofheinz, M., Katz, N., Lucero, E., O’Connell, A., Wang, H., Cleland, A.N., Martinis, J.M.: Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state. Nat. Phys. 4, 523 (2008)

    Article  Google Scholar 

  35. Kemp, A., Saito, S., Munro, W.J., Nemoto, K., Semba, K.: Superconducting qubit as a quantum transformer routing entanglement between a microscopic quantum memory and a macroscopic resonator. Phys. Rev. B 84, 104505 (2011)

    Article  ADS  Google Scholar 

  36. Yu, L.B., Xue, Z.-Y., Wang, Z.D., Yu, Y., Zhu, S.L.: Implementing multi-qubit entanglement of two-level systems inside a superconducting phase qubit. Eur. Phys. J. D 61, 499–505 (2011)

    Article  ADS  Google Scholar 

  37. Grabovskij, G.J., et al.: Entangling microscopic defects via a macroscopic quantum shuttle. New J. Phys. 13, 063015 (2011)

    Article  ADS  Google Scholar 

  38. Loy, M.M.T.: Observation of population inversion by optical adiabatic rapid passage. Phys. Rev. Lett. 32, 814 (1974)

    Article  ADS  Google Scholar 

  39. Wei, L.F., Johansson, J.R., Cen, L.X., Ashhab, S., Nori, F.: Controllable coherent population transfers in superconducting qubits for quantum computing. Phys. Rev. Lett. 100, 113601 (2008)

    Article  ADS  Google Scholar 

  40. Nie, W., Huang, J.S., Shi, X., Wei, L.F.: Quantum state engineering with flux-biased Josephson phase qubits by rapid adiabatic passages. Phys. Rev. A 82, 032319 (2010)

    Article  ADS  Google Scholar 

  41. You, J.Q., Liu, Y.-X., Sun, C.P., Nori, F.: Persistent single-photon production by tunable on-chip micromaser with a superconducting quantum circuit. Phys. Rev. B 75, 104516 (2007)

    Article  ADS  Google Scholar 

  42. Liu, Y.-X., You, J.Q., Wei, L.F., Sun, C.P., Nori, F.: Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit. Phys. Rev. Lett. 95, 087001 (2005)

    Article  ADS  Google Scholar 

  43. Shevchenko, S.N., Ashhab, S., Nori, F.: Landau–Zener–Stückelberg interferometry. Phys. Rep. 492, 1–30 (2010)

    Article  ADS  Google Scholar 

  44. Albash, T., et al.: Quantum adiabatic Markovian master equations. New J. Phys. 14, 123016 (2012)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant Nos. 11104057, 11204061, and 61370090), the Anhui Provincial Natural Science Foundation (Grant Nos. 1408085MA16 and 1408085MA21), and the Special Foundation of Research Institution of Hefei Normal University under Grant No. 2015JG03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long-Bao Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, LB., Feng, JS., Dong, P. et al. Robust quantum storage and retrieval in a hybrid system by controllable Stark-chirped rapid adiabatic passages. Quantum Inf Process 14, 3303–3315 (2015). https://doi.org/10.1007/s11128-015-1048-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1048-3

Keywords

Navigation