Skip to main content

Advertisement

Log in

Correlations in \(n\)-local scenario

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Recently Bell-type inequalities were introduced in Branciard et al. (Phys Rev A 85:032119, 2012) to analyze the correlations emerging in an entanglement swapping scenario characterized by independence of the two sources shared between three parties. The corresponding scenario was referred to as bilocal scenario. Here, we derive Bell-type inequalities in \(n+1\) party scenario, i.e., in \(n\)-local scenario. Considering the two different cases with several number of inputs and outputs, we derive local and \(n\)-local bounds. The \(n\)-local inequality studied for two cases are proved to be tight. Replacing the sources by maximally entangled states for two binary inputs and two binary outputs and also for the fixed input and four outputs, we observe quantum violations of \(n\)-local bounds. But the resistance offered to noise cannot be increased as compared to the bilocal scenario. Thus increasing the number of parties in a linear fashion in source-independent scenario does not contribute in lowering down the requirements of revealing quantumness in a network in contrast to the star configuration (Tavakoli et al. in Phys Rev A 90:062109, 2014) of \(n+1\) parties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Acin, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)

    Article  ADS  Google Scholar 

  2. Mayers, D., Yao, A.: Unconditional security in quantum cryptography, In: Proceedings of the 39th IEEE Symposium on Foundations of Computer Science IEEE Computer Society, p. 503. Los Alamitos (1998)

  3. Pironio, S., Acin, A., Massar, S., de la Giroday, A.B., Matsukevich, D.N., Maunz, P., Olmschenk, S., Hayes, D., Luo, L., Manning, T.A., Monroe, C.: More randomness from noisy sources. Nature 464, 1021 (2010)

    Article  ADS  Google Scholar 

  4. Colbeck, R., Kent, A.: Private randomness expansion with untrusted devices. J. Phys. A Math. Theor. 44, 095305 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bancal, J.-D., Gisin, N., Liang, Y.-C., Pironio, S.: Device-independent witnesses of genuine multipartite entanglement. Phys. Rev. Lett. 106, 250404 (2011)

    Article  ADS  Google Scholar 

  6. Cleve, R., Buhrman, H.: Substituting quantum entanglement for communication. Phys. Rev. A 56, 1201 (1997)

    Article  ADS  Google Scholar 

  7. Acin, A., et al.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)

    Article  ADS  Google Scholar 

  8. Briegel, H.-J., et al.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998)

    Article  ADS  Google Scholar 

  9. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001)

    Article  ADS  Google Scholar 

  10. Bell, J.: Speakable and Unspeakable in Quantum Mechanics, 2nd edn. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  11. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195 (1964)

    Google Scholar 

  12. Hammerer, K., Sørensen, A.S., Polzik, E.S.: Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041 (2010)

    Article  ADS  Google Scholar 

  13. Zukowski, M., et al.: Event-ready-detectors Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287 (1993)

    Article  ADS  Google Scholar 

  14. Branciard, C., Gisin, N., Pironio, S.: Characterizing the nonlocal correlations created via entanglement swapping. Phys. Rev. Lett. 104, 170401 (2010)

    Article  ADS  Google Scholar 

  15. Fritz, T.: Beyond Bell’s theorem: correlation scenarios. New J. Phys. 14, 103001 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  16. Fritz, T.: Beyond Bell’s theorem II: scenarios with arbitrary causal structure, arXiv:1404.4812 (2014)

  17. Henson, J., Lal, R., Pusey, M.F.: Theory-independent limits on correlations from generalized Bayesian networks. New J. Phys. 16, 113043 (2014)

    Article  ADS  Google Scholar 

  18. Tavakoli, A., Skrzypczyk, P., Cavalcanti, D., Acin, A.: Nonlocal correlations in the star-network configuration. Phys. Rev. A 90, 062109 (2014)

    Article  ADS  Google Scholar 

  19. Branciard, C., Rosset, D., Gisin, N., Pironio, S.: Bilocal versus non-bilocal correlations in entanglement swapping experiments. Phys. Rev. A 85, 032119 (2012)

    Article  ADS  Google Scholar 

  20. Gisin, N., Gisin, B.: A local variable model for entanglement swapping exploiting the detection loophole. Phys. Lett. A 297, 279 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Greenberger, D.M., Horne, M., Zeilinger, A.: Bell theorem without inequalities for two particles. II. Inefficient detectors. Phys. Rev. A 78, 022111 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  22. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)

    Article  ADS  Google Scholar 

  23. Vertesi, T., Pironio, S., Brunner, N.: Closing the detection loophole in Bell experiments using qudits. Phys. Rev. Lett. 104, 060401 (2010)

    Article  ADS  Google Scholar 

  24. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)

    MATH  Google Scholar 

  25. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to D. Rosset and C. Branciard for stimulating discussions on the topic while visiting Kolkata. The authors also thank Ajoy Sen for interesting and helpful discussions relating to the topic of this work. The author KM acknowledges the financial support by UGC, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Sarkar.

Appendices

Appendix 1: representation of the \(4\)-local correlation in terms of \(q_{\bar{\alpha }_{1}\bar{ \alpha }_{2} \bar{\alpha }_{3}\bar{\alpha }_{4}}\)

We note here that \(\bar{\alpha }_{1}\) is specified by \(\lambda _1\); \( \bar{ \alpha }_{2}\) is specified by \(\lambda _1, \lambda _2\); \( \bar{\alpha }_{3}\) is specified by \(\lambda _2, \lambda _3\); and \( \bar{\alpha }_{4}\) is specified by \(\lambda _3\). Then \(\bigcup _{\bar{ \alpha }_{2}}\Lambda ^{123}_{\bar{\alpha }_{1}\bar{ \alpha }_{2} \bar{\alpha }_{3}\bar{\alpha }_{4}} = \Lambda ^{123}_{\bar{\alpha }_{1}\bar{\alpha }_{3}\bar{\alpha }_{4}} = \Lambda ^{1}_{\bar{\alpha }_{1}} \times {\Lambda ^{23}_{\bar{\alpha }_{3}\bar{\alpha }_{4}}}\), \(\bigcup _{\bar{\alpha }_{3}}\Lambda ^{123}_{\bar{\alpha }_{1}\bar{ \alpha }_{2} \bar{\alpha }_{3}\bar{\alpha }_{4}} = \Lambda ^{123}_{\bar{\alpha }_{1}\bar{\alpha }_{2}\bar{\alpha }_{4}} = \Lambda ^{12}_{\bar{\alpha }_{1}\bar{\alpha }_{2}} \times {\Lambda ^{3}_{\bar{\alpha }_{4}}}\) and

$$\begin{aligned} q_{\bar{\alpha }_{1}\bar{\alpha }_{3}\bar{\alpha }_{4}}= & {} \sum _{\bar{\alpha }_{2}}q_{\bar{\alpha }_{1}\bar{ \alpha }_{2} \bar{\alpha }_{3}\bar{\alpha }_{4}}= \int \!\!\int \!\!\int _{\Lambda ^{1}_{\bar{\alpha }_{1}} \times {\Lambda ^{23}_{\bar{\alpha }_{3}\bar{\alpha }_{4}}}} d\lambda _1d\lambda _2d\lambda _3\rho (\lambda _1, \lambda _2, \lambda _3). \end{aligned}$$
(35)
$$\begin{aligned} q_{\bar{\alpha }_{1}\bar{\alpha }_{2}\bar{\alpha }_{4}}= & {} \sum _{\bar{\alpha }_{3}}q_{\bar{\alpha }_{1}\bar{ \alpha }_{2} \bar{\alpha }_{3}\bar{\alpha }_{4}}= \int \!\!\int \!\!\int _{\Lambda ^{12}_{\bar{\alpha }_{1}\bar{\alpha }_{2}} \times {\Lambda ^{3}_{\bar{\alpha }_{4}}}} d\lambda _1d\lambda _2d\lambda _3\rho (\lambda _1, \lambda _2, \lambda _3). \end{aligned}$$
(36)
$$\begin{aligned} q_{\bar{\alpha }_{1}\bar{\alpha }_{4}}= & {} \sum _{\bar{\alpha }_{3}}q_{\bar{\alpha }_{1}\bar{\alpha }_{3}\bar{\alpha }_{4}} = \int \!\!\int \!\!\int _{\Lambda ^{1}_{\bar{\alpha }_{1}} \times {\Lambda ^{2} \times \Lambda ^{3}_{\bar{\alpha }_{4}}}} d\lambda _1d\lambda _2d\lambda _3\rho (\lambda _1, \lambda _2, \lambda _3). \end{aligned}$$
(37)
$$\begin{aligned} q_{\bar{\alpha }_{1}\bar{\alpha }_{2}}= & {} \sum _{\bar{\alpha }_{4}}q_{\bar{\alpha }_{1}\bar{\alpha }_{2}\bar{\alpha }_{4}} = \int \!\!\int \!\!\int _{\Lambda ^{12}_{\bar{\alpha }_{1}\bar{\alpha }_{2}} \times {\Lambda ^{3}}} d\lambda _1d\lambda _2d\lambda _3\rho (\lambda _1, \lambda _2, \lambda _3). \end{aligned}$$
(38)
$$\begin{aligned} q_{\bar{\alpha }_{3}\bar{\alpha }_{4}}= & {} \sum _{\bar{\alpha }_{1}}q_{\bar{\alpha }_{1} \bar{\alpha }_{3}\bar{\alpha }_{4}} = \int \!\!\int \!\!\int _{\Lambda ^{1} \times {\Lambda ^{23}_{\bar{\alpha }_{3}\bar{\alpha }_{4}}}} d\lambda _1d\lambda _2d\lambda _3\rho (\lambda _1, \lambda _2, \lambda _3). \end{aligned}$$
(39)
$$\begin{aligned} q_{\bar{\alpha }_{1}}= & {} \sum _{\bar{\alpha }_{4}}q_{\bar{\alpha }_{1}\bar{\alpha }_{4}} = \int \!\!\int \!\!\int _{\Lambda ^{1}_{\bar{\alpha }_{1}} \times \Lambda ^{2} \times \Lambda ^{3}} d\lambda _1d\lambda _2d\lambda _3\rho (\lambda _1, \lambda _2, \lambda _3). \end{aligned}$$
(40)
$$\begin{aligned} q_{\bar{\alpha }_{4}}= & {} \sum _{\bar{\alpha }_{1}}q_{\bar{\alpha }_{1}\bar{\alpha }_{4}} = \int \!\!\int \!\!\int _{\Lambda ^{1} \times \Lambda ^{2} \times \Lambda ^{3}_{\bar{\alpha }_{4}}} d\lambda _1d\lambda _2d\lambda _3\rho (\lambda _1, \lambda _2, \lambda _3). \end{aligned}$$
(41)

where \(\Lambda ^1 = \bigcup _{\bar{\alpha }_{1}}\Lambda ^{1}_{\bar{\alpha }_{1}}\) , \(\Lambda ^2 =\bigcup _{\bar{\alpha }_{2}\bar{\alpha }_{3}}\Lambda ^{2}_{\bar{\alpha }_{2}\bar{\alpha }_{3}}\) and \(\Lambda ^3 = \bigcup _{\bar{\alpha }_{4}}\Lambda ^{3}_{\bar{\alpha }_{4}}\) are the corresponding state spaces of the variables \(\lambda _1, \lambda _2\) and \(\lambda _3\), respectively.

Now if we now consider \(P\) as \(4\)-local, then the independence condition (7) implies [Eq. (42) is obtained from (35), (39), (40) and Eq. (43) is obtained from (36), (38), (41)] for all \(\bar{\alpha }_{1}, \bar{\alpha }_{3}\) and \(\bar{\alpha }_{4}\),

$$\begin{aligned} q_{\bar{\alpha }_{1}\bar{\alpha }_{3}\bar{\alpha }_{4}}= & {} q_{\bar{\alpha }_{1}}q_{\bar{\alpha }_{3}\bar{\alpha }_{4}}\quad \forall \bar{\alpha }_{1}, \bar{\alpha }_{3}, \bar{\alpha }_{4}. \end{aligned}$$
(42)
$$\begin{aligned} q_{\bar{\alpha }_{1}\bar{\alpha }_{2}\bar{\alpha }_{4}}= & {} q_{\bar{\alpha }_{1}\bar{\alpha }_{2}} q_{\bar{\alpha }_{4}}\quad \forall \bar{\alpha }_{1}, \bar{\alpha }_{2}, \bar{\alpha }_{4}. \end{aligned}$$
(43)

The above result can be easily extended to \(n\)-local scenario.

Appendix 2: Proof of Eq. (16)

We define,

$$\begin{aligned} \langle A_{1,x_1}\rangle _{\lambda _{1}}= & {} \sum _{a_1}(-1)^{a_1}P^{22}(a_1|x_1,\lambda _{1}) \end{aligned}$$
(44)
$$\begin{aligned} \langle A_{i,x_i}\rangle _{\lambda _{i}}= & {} \sum _{a_i}(-1)^{a_i}P^{22}(a_i|x_i,\lambda _{i},\lambda _{i+1}),\quad i=2,\ldots ,n \end{aligned}$$
(45)
$$\begin{aligned} \langle A_{n+1,x_{n+1}}\rangle _{\lambda _{n}}= & {} \sum _{a_{n+1}}(-1)^{a_{n+1}}P^{22}(a_{n+1}|x_{n+1},\lambda _{n}). \end{aligned}$$
(46)

Since by assumption \(P^{22}\) is \(n\)-local, it has a \(n\)-local decomposition of the form (6) and (7). So we get,

$$\begin{aligned} I^{22}_{A_2,\ldots A_n}= & {} \frac{1}{4}\int \int \ldots \int d\lambda _{1},\ldots d\lambda _{n} \Pi _{i=1}^n\rho _{i}(\lambda _{i})(\langle A_{1,0}+A_{1,1}\rangle _{\lambda _{1}})\nonumber \\&\times \,(\langle A_{n+1,0}+A_{n+1,1}\rangle _{\lambda _{n}}) (\langle A_{2,0}\ldots A_{n-1,0}\rangle )_{\lambda _{1}\ldots \lambda _{n}}. \end{aligned}$$

Now,

$$\begin{aligned} \mid \langle A_{2,0}\ldots A_{n-1,0}\rangle _{\lambda _{1}\ldots \lambda _{n}} \mid \le 1. \end{aligned}$$
(47)

Using the above relation, we have,

$$\begin{aligned} \mid I^{22}_{A_2,\ldots A_n}\mid\le & {} \frac{1}{4}\int \int d\lambda _{1} d\lambda _{n}\rho _{1}(\lambda _{1})\rho _{n}(\lambda _{n}) (\langle A_{1,0}+A_{1,1}\rangle _{\lambda _{1}})\nonumber \\&\times \,(\langle A_{n+1,0}+A_{n+1,1}\rangle _{\lambda _{n}})\int \ldots \int \Pi _{i=2}^{n-1}\rho _{i}(\lambda _{i})\\= & {} \int d\lambda _{1}\rho _{1}(\lambda _{1}) \frac{\mid (\langle A_{1,0}+A_{1,1}\rangle )_{\lambda _{1}}\mid }{2}\nonumber \\&\times \,\int d\lambda _{n}\rho _n(\lambda _{n}) \frac{\mid (\langle A_{n+1,0}+A_{n+1,1}\rangle )_{\lambda _{n}}\mid }{2}. \end{aligned}$$

Similarly for \(J^{22}_{A_2,\ldots A_n}\) it can be shown that,

$$\begin{aligned} \mid J^{22}_{A_2,\ldots A_n}\mid\le & {} \int d\lambda _{1}\rho _{1}(\lambda _{1}) \frac{\mid (\langle A_{1,0}-A_{1,1}\rangle )_{\lambda _{1}}\mid }{2}\nonumber \\&\times \int d\lambda _{n}\rho _n(\lambda _{n}) \frac{\mid (\langle A_{n+1,0}-A_{n+1,1}\rangle )_{\lambda _{n}}\mid }{2}. \end{aligned}$$

Now, by using Holder’s inequality for \(4\) positive quantities \(\mid (\langle A_{1,0}+A_{1,1}\rangle )_{\lambda _{1}}\mid \), \(\mid (\langle A_{1,0}-A_{1,1}\rangle )_{\lambda _{1}}\mid \), \(\mid (\langle A_{n+1,0}+A_{n+1,1}\rangle )_{\lambda _{n}}\mid \), \(\mid (\langle A_{n+1,0}-A_{n+1,1}\rangle )_{\lambda _{n}}\mid \) we get,

$$\begin{aligned}&\sqrt{\mid I^{22}_{A_2,\ldots A_n}\mid } + \sqrt{\mid J^{22}_{A_2,\ldots A_n}\mid }\\&\quad \le \sqrt{\int d\lambda _{1}\rho _{1}(\lambda _{1})\left( \frac{\mid (\langle A_{1,0}+A_{1,1}\rangle )_{\lambda _{1}}\mid }{2} +\frac{\mid (\langle A_{1,0}-A_{1,1}\rangle )_{\lambda _{1}}\mid }{2}\right) }\\&\quad \le \sqrt{\int d\lambda _{n}\rho _{n}(\lambda _{n})\left( \frac{\mid (\langle A_{n+1,0}+A_{n+1,1}\rangle )_{\lambda _{n}}\mid }{2}+\frac{\mid (\langle A_{n+1,0}-A_{n+1,1}\rangle )_{\lambda _{n}}\mid }{2}\right) }. \end{aligned}$$

Again, \(\frac{\mid (\langle A_{1,0}+A_{1,1}\rangle )_{\lambda _{1}}\mid }{2}+\frac{\mid (\langle A_{1,0}-A_{1,1}\rangle )_{\lambda _{1}}\mid }{2}\) = \(\max (\mid \langle A_{1,0}\rangle _{\lambda _{1}}\mid , \mid \langle A_{1,1}\rangle _{\lambda _{1}}\mid )\le 1\) and similarly \(\max (\mid \langle A_{n+1,0}\rangle _{\lambda _{1}}\mid , \mid \langle A_{n+1,1}\rangle _{\lambda _{1}}\mid )\le 1\). Using these we get,

$$\begin{aligned} \sqrt{\mid I^{22}_{A_2,\ldots A_n}\mid }+ \sqrt{\mid J^{22}_{A_2,\ldots A_n}\mid } \le \int d\lambda _{1}\rho _1(\lambda _{1}). \int d\lambda _{n}\rho _n(\lambda _{n}) = 1. \end{aligned}$$
(48)

Hence the inequality (16) is satisfied. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, K., Paul, B. & Sarkar, D. Correlations in \(n\)-local scenario. Quantum Inf Process 14, 2025–2042 (2015). https://doi.org/10.1007/s11128-015-0971-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-0971-7

Keywords

Navigation