Skip to main content
Log in

Enhancement of quantum correlations in qubit–qutrit system under decoherence of finite temperature

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate the dynamics and protection of quantum correlations of a qubit–qutrit system under local amplitude damping channels with finite temperature. The comparison between entanglement and geometric measure of quantum discord (GMQD) is analyzed. It is found that the GMQD is more robust than the entanglement against the decoherence induced by the channels. Special attention is paid to how to protect the quantum correlations from decoherence by weak measurement and measurement reversal. We find that the weak measurement is not necessary when the initial state is maximally entangled. But for other initial states, a successful protection of quantum correlations requires combined weak measurement and measurement reversal. Under certain conditions, we also notice that we can realize the protection at finite temperature for GMQD, but not for entanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bennett, C.H., Sicincenzo, D.P.: Quantum information and computation. Nature 404, 247 (2000)

    Article  ADS  Google Scholar 

  2. Horodecki, M., Horodecki, P., Horodecki, R., Oppenheim, J., Sen, A., Sen, U., Synak-Radtke, B.: Local versus nonlocal information in quantum-information theory: formalism and phenomena. Phys. Rev. A 71, 062307 (2005)

    Article  ADS  Google Scholar 

  3. Niset, J., Cerf, N.J.: Multipartite nonlocality without entanglement in many dimensions. Phys. Rev. A 74, 052103 (2006)

    Article  ADS  Google Scholar 

  4. Datta, A., Flammia, ST., Caves, CM.: Entanglement and the power of one qubit. Phys. Rev. A 72, 042316 (2005)

  5. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  6. Luo, S.L., Fu, S.S.: Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  7. Luo, S.L.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)

    Article  ADS  Google Scholar 

  8. Luo, S.L., Fu, S.S.: Measurement-induced nonlocality. Phys. Rev. Lett. 106, 120401 (2011)

    Article  ADS  Google Scholar 

  9. Zhou, T., Cui, J.X., Long, G.L.: Measure of nonclassical correlation in coherence-vector representation. Phys. Rev. A 84, 062105 (2011)

    Article  ADS  Google Scholar 

  10. Gharibian, S.: Quantifying nonclassicality with local unitary operations. Phys. Rev. A 86, 042106 (2012)

    Article  ADS  Google Scholar 

  11. Guo, J.L., Wang, L., Long, G.L.: Measurement-induced disturbance and thermal negativity in 1D optical lattice chain. Ann. Phys 330, 192 (2013)

    Article  ADS  MATH  Google Scholar 

  12. Mi, Y.J.: Classical correlation and quantum discord in a Two qubit system under dissipation environments. Int. J. Theor. Phys. 51, 544 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  14. Lanyon, B.P., Barbieri, M., Almedia, M.P., White, A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501 (2008)

    Article  ADS  Google Scholar 

  15. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995)

    Article  ADS  Google Scholar 

  16. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594 (1998)

    Article  ADS  Google Scholar 

  18. Kwiat, P.G., Berglund, A.J., Altepeter, J.B., White, A.G.: Experimental verification of decoherence-free subspaces. Science 290, 498 (2000)

    Article  ADS  Google Scholar 

  19. Viola, L., Knill, E., Lloyd, S.: Dynamical decoupling of open quantum systems. Phys. Rev. Lett. 82, 2417 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. West, J.R., Lidar, D.A., Fong, B.H., Gyure, M.F.: High fidelity quantum gates via dynamical decoupling. Phys. Rev. Lett. 105, 230503 (2010)

    Article  ADS  Google Scholar 

  21. Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81, 040103 (2010)

    Article  ADS  Google Scholar 

  22. Lee, J.C., Jeong, Y.C., Kim, Y.S., Kim, Y.H.: Experimental demonstration of decoherence suppression via quantum measurement reversal. Opt. Express 19, 16309 (2011)

    Article  ADS  Google Scholar 

  23. Sun, Q., Al-Amri, M., Zubairy, M.S.: Reversing the weak measurement of an arbitrary field with finite photon number. Phys. Rev. A 80, 033838 (2009)

    Article  ADS  Google Scholar 

  24. Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117 (2012)

    Article  Google Scholar 

  25. Xiao, X., Li, T.L.: Protecting qutrit-qutrit entanglement by weak measurement and reversal. Eur. Phys. J. D 67, 204 (2013)

    Article  ADS  Google Scholar 

  26. Wang, S.C., Yu, Z.W., Zou, W.J., Wang, X.B.: Protecting quantum states from decoherence of finite temperature using weak measurement. Phys. Rev. A 89, 022318 (2014)

    Article  ADS  Google Scholar 

  27. Guo, J.L., Li, H., Long, G.L.: Decoherent dynamics of quantum correlations in qubitCqutrit systems. Quantum Inf. Process 12, 3421 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  29. Groisman, B., Popescu, S., Winter, A.: Quantum, classical, and total amount of correlations in a quantum state. Phys. Rev. A 72, 032317 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  30. Dakić, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  Google Scholar 

  31. Hassan, A.S.M., Lari, B., Joag, P.S.: Tight lower bound to the geometric measure of quantum discord. Phys. Rev. A 85, 024302 (2012)

    Article  ADS  Google Scholar 

  32. Korotkov, A.N.: Continuous quantum measurement of a double dot. Phys. Rev. B 60, 5737 (1999)

    Article  ADS  Google Scholar 

  33. Korotkov, A.N., Jordan, A.N.: Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett. 97, 166805 (2006)

    Article  ADS  Google Scholar 

  34. Mabuchi, H., Zoller, P.: Inversion of quantum jumps in quantum optical systems under continuous observation. Phys. Rev. Lett. 76, 3108 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China Grant Nos. 11305114 and 11304226, as well as by the National Natural Science Foundation of Hebei Province of China under Grant No. A2012202028 and Natural Science Foundation of Tianjin Normal University of China under Grant No. 5RL113.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Liang Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, JL., Wei, JL. & Qin, W. Enhancement of quantum correlations in qubit–qutrit system under decoherence of finite temperature. Quantum Inf Process 14, 1399–1410 (2015). https://doi.org/10.1007/s11128-015-0939-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-0939-7

Keywords

Navigation