Skip to main content
Log in

Improved entanglement–purification protocol using three Werner states and LOCC

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

An entanglement–purification protocol is introduced using three Werner states with application of local operations, including multiple CNOT gates, and classical communications. We achieve some improvements on fidelity and probability, compared with that of the original two-Werner-state protocol and its improved version.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Popesco, S., Schumacher, B., Smolin, J., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)

    Article  ADS  Google Scholar 

  2. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleportation an unknown quantum state via dual classical and EPR channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Deng, F.G., Li, C.Y., Li, Y.S., Zhou, H.Y., Wang, Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72, 022338 (2005)

    Article  ADS  Google Scholar 

  4. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution. In: Proceedings of the IEEE, vol. 175 (1984)

  6. Bennett, C.H.: Quantum cryptography: uncertainty in the service of privacy. Science 257, 752 (1992)

    Article  ADS  Google Scholar 

  7. Jennewein, T., Simon, C., Weihs, G., Weinfurter, H., Zeilinger, A.: Quantum cryptography with entangled photons. Phys. Rev. Lett. 84, 4729 (2000)

    Article  ADS  Google Scholar 

  8. Long, G.L., Liu, X.S.: Theoretically efficient high capacity quantum key distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  9. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  10. Patel, A.: What is quantum computation? quant-ph/9909082 v1 (1999)

  11. Bennett, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature 404, 247 (2000)

    Article  ADS  Google Scholar 

  12. Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656 (1996)

    Article  ADS  Google Scholar 

  13. Schumacher, B.: Quantum coding. Phys. Rev. A 51, 2738 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  14. Jozsa, R., Schumacher, B.J.: A new proof of the quantum noiseless coding theorem. J. Mod. Opt. 41, 2343 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret? Phys. Rev. Lett. 83, 648 (1999)

    Article  ADS  Google Scholar 

  16. Lance, A.M., Symul, T., Bowen, W.P., Sanders, B.C., Lam, P.K.: Tripartite quantum state sharing. Phys. Rev. Lett. 92, 177903 (2004)

    Article  ADS  Google Scholar 

  17. Lance, A.M., Symul, T., Bowen, W.P., Sanders, B.C., Tyc, T., Ralph, T.C., Lam, P.K.: Continuous variable quantum state sharing via quantum disentanglement. Phys. Rev. A 71, 033814 (2005)

    Article  ADS  Google Scholar 

  18. Li, Y., Zhang, K., Peng, K.: Multiparty secret sharing of quantum information based on entanglement swapping. Phys. Lett. A 324, 420 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Multiparty quantum state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs. Phys. Rev. A 72, 044301 (2005)

    Article  ADS  Google Scholar 

  20. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  21. Sergey, N., Filippov, A., Melnikov, A., Ziman, M.: Dissociation and annihilation of multipartite entanglement structure in dissipative quantum dynamics. Phys. Rev. A 88, 062328 (2013)

    Article  ADS  Google Scholar 

  22. Pernice, A., Strunz, W.T.: Decoherence and the nature of system-environment correlations. Phys. Rev. A 84, 062121 (2011)

    Article  ADS  Google Scholar 

  23. Guhne, O., Bodoky, F., Blaauboer, M.: Multiparticle entanglement under the influence of decoherence. Phys. Rev. A 78, 060301 (2008)

    Article  ADS  Google Scholar 

  24. Das, S., Agarwal, G.S.: Decoherence effects in interacting qubits under the influence of various environments. J. Phys. B At. Mol. Opt. Phys. 42, 205502 (2009)

  25. Kim, K.A., Min, H.: OH, S.D., Ahn, D.: Decoherence effects on the entangled states in a noisy quantum channel. J. Korean Phys. Soc. 45, 273 (2004)

    Google Scholar 

  26. Hessian, H.A.: Quantum decoherence and entanglement induced by nonlinear dissipative environment. Prog. Theor. Phys. 127, 631 (2012)

    Article  ADS  MATH  Google Scholar 

  27. Werner, R.F.: Quantum states with EPR correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)

    Article  ADS  Google Scholar 

  28. Feng, X.L., Gong, S.Q., Xu, Z.Z.: Entanglement purification via controlled-controlled-NOT operations. Phys. Lett. A 271, 44 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  29. Okrasa, M., Walczak, Z.: Comment on: entanglement purification via controlled-controlled-NOT operations [Phys. Lett. A 271 (2000) 44]. Phys. Lett. A 372, 3136 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  30. Feng, X.L., Gong, S.Q., Xu, Z.Z.: Reply to Comment on: ‘Entanglement purification via controlled-controlled-NOT operations’ [Phys. Lett. A 271 (2000) 44] [Phys. Lett. A 372 (2008) 3136]. Phys. Lett. A 372, 3337 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  31. Pan, J.W., Simon, C., Brukner, C., Zeilinger, A.: Entanglement purification for quantum communication. Nature 410, 1067 (2001)

    Article  ADS  Google Scholar 

  32. Feng, X.L., Kwek, L.C., Oh, C.H.: Electronic entanglement purification scheme enhanced by charge detections. Phys. Rev. A 71, 064301 (2005)

    Article  ADS  Google Scholar 

  33. Sheng, Y.B., Deng, F.G., Long, G.L.: Multipartite electronic entanglement purification with charge detection. Phys. Lett. A 375, 396 (2010)

    Article  ADS  Google Scholar 

  34. Kruszynska, C., Miyake, A., Briegel, H., Dur, W.: Entanglement purification protocols for all graph states. Phys. Rev. A 74, 052316 (2006)

    Article  ADS  Google Scholar 

  35. Murao, M., Plenio, M.B., Popescu, S., Vedral, V., Knight, P.L.: Multi-particle entanglement purification protocols. Phys. Rev. A 57, 4075 (1997)

    Article  ADS  Google Scholar 

  36. Deutsch, D., Ekert, A., Jozsa, R., Macchiavello, C., Popescu, S., Sanpera, A.: Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818 (1996)

    Article  ADS  Google Scholar 

  37. Simon, C., Pan, J.W.: Polarization entanglement purification using spatial entanglement. Phys. Rev. Lett. 89, 257901 (2002)

    Article  ADS  Google Scholar 

  38. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Efficient polarization entanglement purification based on parametric down conversion sources with cross-Kerr nonlinearity. Phys. Rev. A 77, 042308 (2008)

    Article  ADS  Google Scholar 

  39. Sheng, Y.B., Deng, F.G.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyper entanglement. Phys. Rev. A 81, 032307 (2010)

    Article  ADS  Google Scholar 

  40. Li, X.H.: Deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82, 044304 (2010)

    Article  ADS  Google Scholar 

  41. Sheng, Y.B., Deng, F.G.: One-step deterministic polarization entanglement purification using spatial entanglement. Phys. Rev. A 82, 044305 (2010)

    Article  ADS  Google Scholar 

  42. Deng, F.G.: One-step error correction for multipartite polarization entanglement. Phys. Rev. A 83, 062316 (2011)

    Article  ADS  Google Scholar 

  43. Deng, F.G.: Efficient multipartite entanglement purification with the entanglement link from a subspace. Phys. Rev. A 84, 052312 (2011)

    Article  ADS  Google Scholar 

  44. Ren, B.C., Deng, F.G.: Hyper entanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities. Laser Phys. Lett. 10, 115201 (2013)

    Article  ADS  Google Scholar 

  45. Metwally, N.: More efficient entanglement purification. Phys. Rev. A 66, 054302 (2002)

    Article  ADS  Google Scholar 

  46. Cheong, Y.W., Lee, S.W., Lee, J., Lee, H.W.: Entanglement purification for high-dimensional multipartite systems. Phys. Rev. A 76, 042314 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  47. Sheng, Y.B., Deng, F.G., Zhao, B.K., Wang, T.J., Zhou, H.Y.: Multipartite entanglement purification with quantum non-demolition detectors. Eur. Phys. J. D 55, 235 (2009)

    Article  ADS  Google Scholar 

  48. Li, T., Ren, B.C., Wei, H.R., Hua, M., Deng, F.G.: High efficiency multipartite entanglement purification of electron-spin states with charge detection. QIP 12, 855 (2013)

    MATH  MathSciNet  Google Scholar 

  49. DiVincenzo, D.P.: The physical implementation of quantum computation. arXiv:quant-ph/0002077v3 (2000)

  50. Nemoto, K., Munro, W.J.: A near deterministic linear optical CNOT gate. Phys. Rev. Lett 93, 250502 (2004)

    Article  ADS  Google Scholar 

  51. Batista, J., Silva, R., Ramos, R.V.: Implementations of quantum and classical gates with linear optical devices and photon number quantum non-demolition measurement for polarization encoded qubits. arXiv:quant-ph/0607185v1 (2006)

  52. Roychowdhury, S., Jaiswal, V.K., Singh, R.P.: Implementing controlled NOT gate with optical vortex. Opt. Commun. 236, 419 (2004)

    Article  ADS  Google Scholar 

  53. Biswas, K.K., Sajeed, S.: Design and realization of a quantum Controlled NOT gate using optical implementation. Int. J. Adv. Res. Technol. 1, 2278 (2012)

    Google Scholar 

  54. Li-Bing, C.: The non-local implementation of a CNOT gate and single-qubit rotation. Chin. Phys. Soc. 11, 881 (2002)

    Article  ADS  Google Scholar 

  55. Fiorentino, M., Kim, T., Wong, F.N.C.: Single-photon two-qubit logic gates. In: AIP Conference Proceedings, vol. 734, p. 211 (2004)

Download references

Acknowledgments

We are grateful to an anonymous referee for bringing several papers to our attention and also for his/her useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Jafarpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafarpour, M., Ashrafpouri, F. Improved entanglement–purification protocol using three Werner states and LOCC. Quantum Inf Process 14, 607–621 (2015). https://doi.org/10.1007/s11128-014-0861-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0861-4

Keywords

Navigation