Skip to main content
Log in

Multiple network alignment on quantum computers

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Comparative analyses of graph-structured datasets underly diverse problems. Examples of these problems include identification of conserved functional components (biochemical interactions) across species, structural similarity of large biomolecules, and recurring patterns of interactions in social networks. A large class of such analyses methods quantify the topological similarity of nodes across networks. The resulting correspondence of nodes across networks, also called node alignment, can be used to identify invariant subgraphs across the input graphs. Given \(k\) graphs as input, alignment algorithms use topological information to assign a similarity score to each \(k\)-tuple of nodes, with elements (nodes) drawn from each of the input graphs. Nodes are considered similar if their neighbors are also similar. An alternate, equivalent view of these network alignment algorithms is to consider the Kronecker product of the input graphs and to identify high-ranked nodes in the Kronecker product graph. Conventional methods such as PageRank and HITS (Hypertext-Induced Topic Selection) can be used for this purpose. These methods typically require computation of the principal eigenvector of a suitably modified Kronecker product matrix of the input graphs. We adopt this alternate view of the problem to address the problem of multiple network alignment. Using the phase estimation algorithm, we show that the multiple network alignment problem can be efficiently solved on quantum computers. We characterize the accuracy and performance of our method and show that it can deliver exponential speedups over conventional (non-quantum) methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abrams, D.S., Lloyd, S.: Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors. Phys. Rev. Lett. 83(24), 5162–5165 (1999). doi:10.1103/PhysRevLett.83.5162

  2. Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for Hamiltonian simulation. Quantum Inf. Process. 11(2), 541–561 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Perdomo-Ortiz, A., Dickson, N., Drew-Brook, M., Rose, G., Aspuru-Guzik, A.: Finding low-energy conformations of lattice protein models by quantum annealing. Sci. Rep. 2 (2012)

  4. Sanders, B.C.: Algorithm for quantum simulation. Appl. Math. Inf. Sci. 3(2), 117–122 (2009)

    MathSciNet  Google Scholar 

  5. Raeisi, S., Wiebe, N., Sanders, B.C.: Quantum-circuit design for efficient simulations of many-body quantum dynamics. New J. Phys. 14(10), 103,017 (2012)

    Article  Google Scholar 

  6. Kassal, I., Jordan, S.P., Love, P.J., Mohseni, M., Aspuru-Guzik, A.: Polynomial-time quantum algorithm for the simulation of chemical dynamics. Proc. Natl. Acad. Sci. 105(48), 18,681–18,686 (2008)

    Article  Google Scholar 

  7. Lidar, D., Wang, H.: Calculating the thermal rate constant with exponential speedup on a quantum computer. Phys. Rev. E 59, 2429 (1999)

    Article  ADS  Google Scholar 

  8. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999). doi:10.1137/S0036144598347011

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Grover, L.K.: A fast quantum mechanical algorithm for database search.In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’96, pp. 212–219. ACM, New York (1996)

  10. Brown, K.L., Munro, W.J., Kendon, V.M.: Using quantum computers for quantum simulation. Entropy 12(11), 2268–2307 (2010)

  11. Lu, D., Xu, B., Xu, N., Li, Z., Chen, H., Peng, X., Xu, R., Du, J.: Quantum chemistry simulation on quantum computers: theories and experiments. Phys. Chem. Chem. Phys. 14, 9411–9420 (2012). doi:10.1039/C2CP23700H

    Article  Google Scholar 

  12. Kassal, I., Whitfield, J.D., Perdomo-Ortiz, A., Yung, M.H., Aspuru-Guzik, A.: Simulating chemistry using quantum computers. Annu. Rev. Phys. Chem. 62(1), 185–207 (2011). doi:10.1146/annurev-physchem-032210-103512. PMID: 21166541

    Article  ADS  Google Scholar 

  13. Young, K.C., Sarovar, M., Aytac, J., Herdman, C., Whaley, K.B.: Finite temperature quantum simulation of stabilizer hamiltonians. J. Phys. B: At. Mol. Opt. Phys. 45(15), 154,012 (2012)

    Article  Google Scholar 

  14. Aspuru-Guzik, A., Dutoi, A., Love, P., Head-Gordon, M.: Simulated quantum computation of molecular energies. Science 309, 1704 (2005)

    Article  ADS  Google Scholar 

  15. Wang, H., Kais, S., Aspuru-Guzik, A., Hoffmann, M.: Quantum algorithm for obtaining the energy spectrum of molecular systems. Phys. Chem. Chem. Phys. 10, 5388 (2008)

    Article  Google Scholar 

  16. Veis, L., Pittner, J.: Quantum computing applied to calculations of molecular energies: \(\text{ CH }_2\) benchmark. J. Chem. Phys. 133, 194,106 (2010)

    Article  Google Scholar 

  17. Daskin, A., Kais, S.: Decomposition of unitary matrices for finding quantum circuits: application to molecular Hamiltonians. J. Chem. Phys. 134(14), 144,112 (2011). doi:10.1063/1.3575402

    Article  Google Scholar 

  18. Daskin, A., Grama, A., Kais, S.: A universal quantum circuit scheme for finding complex eigenvalues. Quantum Inf. Process. 13(2), 333–353 (2014). doi:10.1007/s11128-013-0654-1

    Article  MathSciNet  MATH  Google Scholar 

  19. Childs, A.M., van Dam, W.: Quantum algorithms for algebraic problems. Rev. Mod. Phys. 82, 1–52 (2010). doi:10.1103/RevModPhys.82.1

  20. Kitaev, A.: Quantum measurements and the Abelian stabilizer problem. Electron. Colloq. Comput. Complex. 3(3) (1996)

  21. Mohammadi, S., Grama, A.: Biological network alignment. In: Functional Coherence of Molecular Networks in Bioinformatics, pp. 97–136. Springer, Berlin (2012)

  22. Kollias, G., Mohammadi, S., Grama, A.: Network similarity decomposition (nsd): a fast and scalable approach to network alignment. IEEE Trans. Knowl. Data Eng. 24(12), 2232–2243 (2012). doi:10.1109/TKDE.2011.174

    Article  Google Scholar 

  23. Koyutürk, M., Kim, Y., Topkara, U., Subramaniam, S., Szpankowski, W., Grama, A.: Pairwise alignment of protein interaction networks. J. Comput. Biol. 13(2), 182–199 (2006)

    Article  MathSciNet  Google Scholar 

  24. Singh, R., Xu, J., Berger, B.: Pairwise global alignment of protein interaction networks by matching neighborhood topology. In: Research in Computational Molecular Biology, Lecture Notes in Computer Science, vol. 4453, pp. 16–31. Springer, Berlin (2007)

  25. Aharonov, D., Ta-Shma, A.: Adiabatic quantum state generation and statistical zero knowledge. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, STOC ’03, pp. 20–29. ACM, New York (2003). doi:10.1145/780542.780546

  26. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citationranking: bringing order to the web. Technical Report 1999-66,Stanford InfoLab (1999). Previous number = SIDL-WP-1999-0120

  27. Brezinski, C., Redivo-Zaglia, M.: The pagerank vector: properties, computation, approximation, and acceleration. SIAM J. Matrix Anal. Appl. 28(2), 551–575 (2006). doi:10.1137/050626612

    Article  MathSciNet  MATH  Google Scholar 

  28. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  29. Tatusova, T.A., Madden, T.L.: Blast 2 sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol. Lett. 174(2), 247–250 (1999)

    Article  Google Scholar 

  30. Singh, R., Xu, J., Berger, B., et al.: Global alignment of multipleprotein interaction networks. In: Pacific Symposium on Biocomputing, vol. 13, pp.303–314 (2008)

  31. Liao, C.S., Lu, K., Baym, M., Singh, R., Berger, B.: Isorankn: spectral methods for global alignment of multiple protein networks. Bioinformatics 25(12), i253–i258 (2009)

    Article  Google Scholar 

  32. Bender, A., Glen, R.C.: Molecular similarity: a key technique in molecular informatics. Org. Biomol. Chem. 2, 3204–3218 (2004). doi:10.1039/B409813G

    Article  Google Scholar 

  33. Rupp, M., Proschak, E., Schneider, G.: Kernel approach to molecular similarity based on iterative graph similarity. J. Chem. Inf. Model. 47(6), 2280–2286 (2007)

    Article  Google Scholar 

  34. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lempel, R., Moran, S.: The stochastic approach for link-structure analysis (salsa) and the tkc effect. Comput. Netw. 33(1), 387–401 (2000)

    Article  Google Scholar 

  36. Farahat, A., LoFaro, T., Miller, J.C., Rae, G., Ward, L.A.: Authority rankings from hits, pagerank, and salsa: existence, uniqueness, and effect of initialization. SIAM J. Sci. Comput. 27(4), 1181–1201 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Blondel, V.D., Gajardo, A., Heymans, M., Senellart, P., Van Dooren, P.: A measure of similarity between graph vertices: applications to synonym extraction and web searching. SIAM Rev. 46(4), 647–666 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Meyer, C.: Matrix Analysis and Applied Linear Algebra Book and Solutions Manual, vol. 2. Society for Industrial and Applied Mathematics (2000)

  39. Wishart, J.: The generalised product moment distribution in samples from a normal multivariate population. Biometrika 20(1/2), 32–52 (1928)

    Article  Google Scholar 

  40. Mehta, M.L.: Random Matrices, vol. 142. Academic Press, London (2004)

    MATH  Google Scholar 

  41. Berry, D., Ahokas, G., Cleve, R., Sanders, B.: Efficient quantum algorithms for simulating sparse hamiltonians. Commun. Math. Phys. 270(2), 359–371 (2007). doi:10.1007/s00220-006-0150-x

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. Childs, A.M., Kothari, R.: Simulating sparse hamiltonians with stardecompositions. In: Theory of Quantum Computation, Communication,and Cryptography, pp. 94–103. Springer, Berlin (2011)

  43. Kempe, J.: Quantum random walks: an introductory overview. Contemp. Phys. 44(4), 307–327 (2003)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anmer Daskin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daskin, A., Grama, A. & Kais, S. Multiple network alignment on quantum computers. Quantum Inf Process 13, 2653–2666 (2014). https://doi.org/10.1007/s11128-014-0818-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0818-7

Keywords

Navigation