Skip to main content
Log in

Polarization-entangled photon generation in a semiconductor quantum dot coupled to a cavity interacting with external fields

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We theoretically investigate polarization-entangled photon generation using a semiconductor quantum dot embedded in a microcavity. The entangled states can be produced by the application of two cross-circularly polarized laser fields. The quantum dot nanostructure is considered as a four-level system (ground, two excitons and bi-exciton states), and the theoretical study relies on the dressed states scheme. The quantum correlations, reported in terms of the entanglement of formation, are extensively studied for several values of the important parameters of the quantum dot system as the bi-exciton binding energy, the decoherence times of the characteristic transitions, the quality factor of the cavity and the intensities of the applied fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Barenco, A., Deutsch, D., Ekert, A., Jozsa, R.: Conditional quantum dynamics and logic gates. Phys. Rev. Lett. 74, 4083 (1995)

    Article  ADS  Google Scholar 

  3. Sleator, T., Weinfurter, H.: Realizable universal quantum logic gates. Phys. Rev. Lett. 74, 4087 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091 (1995)

    Article  ADS  Google Scholar 

  5. Zeilinger, Anton: Dance of the Photons: Fron Einstein to Quantum Teleportation. Farrar, Straus and Giroux, New York (2010)

    Google Scholar 

  6. Kwiat, P.G., Mattle, K., Weinfurter, H., Zeilinger, A., Sergienko, A.V., Shih, Y.: New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337 (1995)

    Article  ADS  Google Scholar 

  7. Kwiat, P.G., Waks, E., White, A.G., Appelbaum, I., Eberhard, P.H.: Ultrabright source of polarization-entangled photons. Phys. Rev. A 60, R773 (1999)

    Article  ADS  Google Scholar 

  8. Kocher, C.A., Commins, E.D.: Polarization correlation of photons emitted in an atomic cascade. Phys. Rev. Lett. 18, 575 (1967)

    Article  ADS  Google Scholar 

  9. Clauser, J.F.: Experimental investigation of a polarization correlation anomaly. Phys. Rev. Lett. 36, 1223 (1976)

    Article  ADS  Google Scholar 

  10. Aspect, A., Grangier, P., Roger, G.: Experimental tests of realistic local theories via Bell’s theorem. Phys. Rev. Lett. 47, 460 (1981)

    Article  ADS  Google Scholar 

  11. Benson, O., Santori, C., Pelton, M., Yamamoto, Y.: Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513 (2000)

    Article  ADS  Google Scholar 

  12. Akopian, N., Lindner, N.H., Poem, E., Berlatzky, Y., Avron, J., Gershoni, D., Gerardot, B.D., Petroff, P.M.: Entangled photon pairs from semiconductor quantum dots. Phys. Rev. Lett. 96, 130501 (2006)

    Article  ADS  Google Scholar 

  13. Young, R., Stevenson, R., Atkinson, P., Cooper, K., Ritchie, D., Shields, A.: Improved fidelity of triggered entangled photons from single quantum dots. New J. Phys. 8, 29 (2006)

    Article  ADS  Google Scholar 

  14. Hafenbrak, R., Ulrich, S., Michler, P., Wang, L., Rastelli, A., Schmidt, O.: Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K. New J. Phys. 9, 315 (2007)

    Article  ADS  Google Scholar 

  15. Dousse, A., Suffczynski, J., Beveratos, A., Krebs, O., Lematre, A., Sagnes, I., Bloch, J., Voisin, P., Senellart, P.: Ultrabright source of entangled photon pairs. Nature (London) 466, 217 (2010)

    Article  ADS  Google Scholar 

  16. Ajiki, H., Ishihara, H.: Entangled-photon generation from a quantum dot in cavity QED. Phys. Status Solidi C 6, 276 (2009)

    Article  ADS  Google Scholar 

  17. Ajiki, H., Ishihara, H., Edamatsu, K.: Cavity-assisted generation of entangled photons from a V-type three-level system. New J. Phys. 11, 033033 (2009)

    Article  ADS  Google Scholar 

  18. Ajiki, H., Ishihara, H., Edamatsu, K.: Cavity-QED effects on entangled photon generation from a quantum dot. Physica E 40, 371 (2007)

    Article  ADS  Google Scholar 

  19. Shibata, K., Ajiki, H.: Biexciton effect on entangled-photon generation from a strongly coupled quantum-dot-cavity system. Phys. Rev. A 86, 032301 (2012)

    Article  ADS  Google Scholar 

  20. Johne, R., Gippius, N.A., Pavlovic, G., Solnyshkov, D.D., Shelykh, I.A., Malpuech, G.: Entangled photon pairs produced by a quantum dot strongly coupled to a microcavity. Phys. Rev. Lett. 100, 240404 (2008)

    Article  ADS  Google Scholar 

  21. Johne, R., Gippius, N.A., Malpuech, G.: Entangled photons from a strongly coupled quantum dot-cavity system. Phys. Rev. B 79, 155317 (2009)

    Article  ADS  Google Scholar 

  22. Pathak, P.K., Hughes, S.: Generation of entangled photon pairs from a single quantum dot embedded in a planar photonic-crystal cavity. Phys. Rev. B 79, 205416 (2009)

    Article  ADS  Google Scholar 

  23. Imamoglu, A., Schmidt, H., Woods, G., Deutsch, M.: Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett. 79, 1467 (1997)

    Article  ADS  Google Scholar 

  24. Birnbaum, K.M., Boca, A., Miller, R., Boozer, A.D., Northup, T.E., Kimble, H.J.: Photon blockade in an optical cavity with one trapped atom. Nature (London) 436, 87 (2005)

    Article  ADS  Google Scholar 

  25. Faraon, A., Fushman, I., Englund, D., Stoltz, N., Petroff, P., Vuckovic, J.: Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nat. Phys. 4, 859 (2008)

    Article  Google Scholar 

  26. Gammon, D., Snow, E.S., Shanabrook, B.V., Katzer, D.S., Park, D.: Fine structure splitting in the optical spectra of single GaAs quantum dots. Phys. Rev. Lett. 76, 3005 (1996)

    Article  ADS  Google Scholar 

  27. Ajiki, H.: Parameters of a driven Jaynes–Cummings Hamiltonian. J. Opt. B Quantum Semiclassical Opt. 7, 29 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We would like to thank Petros Androvitsaneas and Charis Anastopoulos for helpful discussions and suggestions during the production of the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostas Blekos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blekos, K., Iliopoulos, N., Stasinou, ME. et al. Polarization-entangled photon generation in a semiconductor quantum dot coupled to a cavity interacting with external fields. Quantum Inf Process 13, 2633–2643 (2014). https://doi.org/10.1007/s11128-014-0815-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0815-x

Keywords

Navigation