Skip to main content
Log in

Line ordering of reversible circuits for linear nearest neighbor realization

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Real quantum computing technologies have different restrictions and constraints which need to be considered during circuit synthesis. In certain technologies, only physically adjacent qubits can interact, which restricts their realizations to only linear nearest neighbor (LNN) architecture. In this work, we formulate the line ordering problem in LNN architecture as task assignment problem to find a mapping (permutation) between task graph and processor graph with minimum cost. We propose two different approaches, a greedy heuristic and a meta-heuristic algorithm based on Harmony Search to solve the task assignment problem. Experimental results show that our algorithms were able to reduce the quantum cost of benchmark circuits by approximately 30 % on average. Moreover, the proposed algorithms were compared to one recently proposed ordering algorithm and were found to further improve the cost by approximately 16 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ahmad, I., Mohammad, MGh, Salman, A.A., Hamdan, S.A.: Broadcast scheduling in packet radio networks using harmony search algorithm. Expert Syst. Appl. 39(1), 1526–1535 (2012)

    Article  Google Scholar 

  2. Alia, O.M., Mandava, R.: The variants of the harmony search algorithm: an overview. Artif. Intell. Rev. 36(1), 49–68 (2011)

    Article  Google Scholar 

  3. Arabzadeh, M., Saeedi, M.: RCViewer+. Available at http://ceit.aut.ac.ir/QDA/RCV.htm, 2.42 edition, February 2013

  4. Arabzadeh, M., Saeedi, M., Zamani, M. S.: Rule-based optimization of reversible circuits. In: 15th Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 849–854 (2010)

  5. Chakrabarti, A., Sur-Kolay, S.: Nearest neighbour based synthesis of quantum boolean circuits. Eng. Lett. 15(2), 356–361 (2007)

    Google Scholar 

  6. Chakrabarti, A., Sur-Kolay, S., Chaudhury, A.: Linear nearest neighbor synthesis of reversible circuits by graph partitioning. http://arxiv.org/abs/1112.0564, v2[cs.ET], (2012)

  7. Cheung, D., Maslov, D., Severini, S.: Translation techniques between quantum circuit architectures. In: Workshop on Quantum Information Processing (2007)

  8. Choi, B.S., Meter, R.V.: On the effect of quantum interaction distance on quantum addition circuits. ACM J. Emerg. Technol. Comput. Syst. 7(3), 11:1–11:17 (2011)

    Google Scholar 

  9. Donald, J., Jha, N.K.: Reversible logic synthesis with fredkin and peres gates. ACM J. Emerg. Technol. Comput. Syst. 4(1), 2:1–2:19 (2008)

    Google Scholar 

  10. Drechsler, R., Wille, R.: Reversible circuits: Recent accomplishments and future challenges for an emerging technology. In: Progress in VLSI Design and Test, volume LNCS 7373, pp. 383–392 (2012)

  11. Fazel, K., Thornton, M.A., Rice, J.E.: Esop-based toffoli gate cascade generation. In: IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, pp. 206–209 (2007)

  12. Feynman, R.P.: Simulating Physics with Computers. Westview Press, Boulder (2002)

    Google Scholar 

  13. Fowler, A.G., Hill, C.D., Hollenberg, L.C.L.: Quantum error correction on linear nearest neighbor qubit arrays. Phys. Rev. A 69(4), 042314.1042314.4 (2004)

    Google Scholar 

  14. Geem, Z.W.: Novel derivative of harmony search algorithm for discrete design variables. Appl. Math. Comput. 199(1), 223–230 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Geem, Z.W.: Music-Inspired Harmony Search Algorithm: Theory and Applications. Springer, Berlin (2009)

    Book  Google Scholar 

  16. Geem, Z.W., Kim, J., Loganathan, G.: A new heuristic optimization algorithm. Simulation 76(2), 60–68 (2001)

    Article  Google Scholar 

  17. Golubitsky, O., Maslov, D.: A study of optimal 4-bit reversible toffoli circuits and their synthesis. IEEE Trans. Comput. 61(9), 1341–1353 (2012)

    Article  MathSciNet  Google Scholar 

  18. Grover, L.: Quantum computers can search arbitrarily large databases by a single query. Phys. Rev. Lett. 79(23), 4709–4712 (1997)

    Article  ADS  Google Scholar 

  19. Gupta, P., Agrawal, A., Jha, N.K.: An algorithm for synthesis of reversible logic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25(11), 2317–2330 (2006)

    Article  Google Scholar 

  20. Haffner, H., Hansel, W., Roos, C. F., Benhelm, J., Chek-al-kar, D., Chwalla, M., Korber, T., Rapol, U. D., Riebe, M., Schmidt, P. O., Becher, C., Guhne, O., Dur, W., Blatt, R.: Scalable multiparticle entanglement of trapped ions. Nature 438(7068), 643–646, 12 (2005)

    Google Scholar 

  21. Hirata, Y., Nakanishi, M., Yamashita, S., Nakashima, Y.: An efficient method to convert arbitrary quantum circuits to ones on a linear nearest neighbor architecture. In: Third International Conference on Quantum, Nano and Micro Technologies, pp. 26–33 (2009)

  22. Hirata, Y., Nakanishi, M., Yamashita, S., Nakashima, Y.: An efficient conversion of quantum circuits to a linear nearest neighbor architecture. Quantum Inf. Comput. 11(1), 142–166 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Karybis, G.: METIS–Serial Graph Partitioning and Fill-reducing Matrix Ordering. Available at http://glaros.dtc.umn.edu/gkhome/metis/metis/overview/

  24. Kassal, I., Whitfield, J.D., Perdomo-Ortiz, A., Yung, M.H., Aspuru-Guzik, A.: Simulating chemistry using quantum computers. Annu. Rev. Phys. Chem. 62(1), 185–207 (2011)

    Article  ADS  Google Scholar 

  25. Kerntopf, P.: A new heuristic algorithm for reversible logic synthesis. In: 41st Design Automation Conference, pp. 834–837 (2004)

  26. Kerntopf, P., Perkowski, M., Podlaski, K.: Synthesis of reversible circuits: A view on the state-of-the-art. In: 12th IEEE Conference on Nanotechnology (IEEE-NANO), pp. 1–6, (2012)

  27. Khan, M.H.: Cost reduction in nearest neighbour based synthesis of quantum boolean circuits. Eng. Lett. 16, 1–5 (2008)

    ADS  Google Scholar 

  28. Khan, M.H.A., Perkowski, M.A.: Multi-output esop synthesis with cascades of new reversible gate family. In: International Symposium On Representations and Methodology of Future Compo Technology (2003)

  29. Kutin, S.A.: Shor’s algorithm on a nearest-neighbor machine. In: Asian Conference on Quantum Information Science (AQIS) (2007)

  30. Lee, C. H., Lee, D., Kim, M.: Optimal task assignment in linear networks. IEEE Trans. Comput. 41(7), 877–880 (1992)

    Google Scholar 

  31. Lee, S., Lee, S., Kim, T., Lee, J., Biamonte, J., Perkowski, M.: The cost of quantum gate primitives. J. Multivalued Log. Soft Comput. 12, 5–6 (2006)

    MathSciNet  Google Scholar 

  32. Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle problem. In: 16th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1109–1117 (2005)

  33. Maslov, D., Dueck, G. W., Miller, D. M.: Techniques for the synthesis of reversible toffoli networks. ACM Trans. Des. Autom. Electron. Syst. 12(4), 42:142:28 (2007)

    Google Scholar 

  34. Meter, R.V., Oskin, M.: Architectural implications of quantum computing technologies. ACM J. Emerg. Technol. Comput. Syst. 2(1), 31–63 (2006)

    Article  Google Scholar 

  35. Miller, D.M., Maslov, D., Dueck, G.W.: A transformation based algorithm for reversible logic synthesis. In: 40th annual Design Automation Conference (2003)

  36. Negrevergne, C., Mahesh, T.S., Ryan, C.A., Ditty, M., Cyr-Racine, F., Power, W., Boulant, N., Havel, T., Cory, D.G., Laflamme, R.: Benchmarking quantum control methods on a 12-qubit system. Phys. Rev. Lett. 96, 170501 (2006)

    Article  ADS  Google Scholar 

  37. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  38. Patel, K. N., Markov, I. L., Hayes, J. P.: Efficient synthesis of linear reversible circuits. In: International Workshop on Logic Synthesis (IWLS), pp. 4470–4477 (2004)

  39. Patel, K.N., Markov, I.L., Hayes, J.P.: Optimal synthesis of linear reversible circuits. Quantum Inf. Comput. 8(3), 282–294 (2008)

    MathSciNet  MATH  Google Scholar 

  40. Perkowski, M., Lukac, M., Shah, D., Kameyama, M.: Synthesis of quantum circuits in linear nearest neighbor model using positive davio lattices. Electron. Energ. 24(1), 71–87 (2011)

    Article  Google Scholar 

  41. Saeedi, M., Markov, I. L.: Synthesis and optimization of reversible circuits—a survey. ACM Comput. Surv. 45(2), 21:1–21:34 (2013)

    Google Scholar 

  42. Saeedi, M., Wille, R., Drechsler, R.: Synthesis of quantum circuits for linear nearest neighbor architectures. Quantum Inf. Process. 10(3), 355–377 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Saeedi, M., Zamani, M.S., Sedighi, M., Sasanian, Z.: Reversible circuit synthesis using a cycle-based approach. ACM J. Emerg. Technol. Comput. Syst. 6(4), 1–26 (2010)

    Article  Google Scholar 

  44. Salman, A.A., Ahmad, I., Al-Rushood, H., Hamdan, S.: Solving the task assignment problem using harmony search algorithm. Evolv. Syst. (2012)

  45. Schaeffer, B., Perkowski, M.: Linear reversible circuit synthesis in the linear nearest-neighbor model. In: 42nd IEEE International Symposium on, Multiple-Valued Logic, pp. 157–160 (2012)

  46. Shende, V.V., Bullock, S.S., Markov, I.L.: Synthesis of quantum-logic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25(6), 1000–1010 (2006)

    Article  Google Scholar 

  47. Shende, V.V., Markov, I.L.: On the cnot-cost of toffoli gates. Quantum Inf. Comput. 9(5), 461–486 (2009)

    MathSciNet  MATH  Google Scholar 

  48. Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Synthesis of reversible logic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 22(6), 710–722 (2003)

    Article  Google Scholar 

  49. Shor, P.: Polynomial time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  50. Takahashi, Y., Kunihiro, N., Ohta, K.: The quantum fourier transform on a linear nearest neighbor architecture. Quantum Inf. Comput. 7(4), 383–391 (2007)

    MathSciNet  MATH  Google Scholar 

  51. Wang, D., Sun, S., Chen, H.: Matrix-based algorithm for 4-qubit reversible logic circuits synthesis. Energy Procedia 13, 365–371 (2011)

    Article  MathSciNet  Google Scholar 

  52. Wille, R., Drechsler, R.: Bdd-based synthesis of reversible logic for large functions. In: 46th Annual Design Automation Conference, pp. 270–275 (2009)

  53. Wille, R., Grosse, D., Teuber, L., Dueck, G. W., Drechsler, R.: Revlib: An online resource for reversible functions and reversible circuits. In: 38th IEEE International Symposium on Multiple Valued Logic, pp. 220–225 (2008)

  54. Wille, R., Saeedi, M., Drechsler, R.: Synthesis of reversible functions beyond gate count and quantum cost. In: International Workshop on Logic Synthesis (IWLS) (2009)

  55. Younes, A., Miller, J.F.: Representation of boolean quantum circuits as reed muller expansions. Int. J. Electron. 91(7), 431–444 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Rolf Drechsler and Robert Wille from University of Bremen as well as Mehdi Saeedi from the University of Southern California for their valuable input and discussion while preparing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad AlFailakawi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

AlFailakawi, M., AlTerkawi, L., Ahmad, I. et al. Line ordering of reversible circuits for linear nearest neighbor realization. Quantum Inf Process 12, 3319–3339 (2013). https://doi.org/10.1007/s11128-013-0601-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0601-1

Keywords

Navigation