Skip to main content
Log in

Nondestructive Greenberger-Horne-Zeilinger-state analyzer

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a method to construct a nondestructive n-qubit Greenberger– Horne–Zeilinger (GHZ)-state analyzer. The method is applied to any systems in which two-qubit parity gates, controlled-phase gates, or controlled-NOT gates can be realized. We also present a simplified two-photon parity gate with which a nondestructive n-photon GHZ-state analyzer could be largely simplified. The nondestructive GHZ-state analyzer is expected to find useful applications for economical quantum-information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bennett C.H., Brassard G., Crepeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1898 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Wang X.W., Yang G.J., Su Y.H., Xie M.: Simple schemes for quantum information processing with W-type entanglement. Quantum Inf. Process. 8, 431–442 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Wang X.W., Su Y.H., Yang G.J.: Controlled teleportation against uncooperation of part of supervisors. Quantum Inf. Process. 8, 319–330 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Zukowski M., Zeilinger A., Horne M.A., Ekert A.: “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993)

    Article  ADS  Google Scholar 

  5. Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303-1–4 (2005)

    Google Scholar 

  6. Hillery M., Bužek V., Berthiaume A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  7. Wang X.W., Zhang D.Y., Tang S.Q., Xie L.J.: Multiparty hierarchical quantum-information splitting. J. Phys. B: At. Mol. Opt. Phys. 44, 035505.1–1–4 (2011)

  8. Shi R.H., Huang L.S., Yang W., Zhong H.: Asymmetric multi-party quantum state sharing of an arbitrary m-qubit state. Quantum Inf. Process. 10, 53–61 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Murao M., Jonathan D., Plenio M.B., Vedral V.: Quantum telecloning and multiparticle entanglement. Phys. Rev. A 59, 156–161 (1999)

    Article  ADS  Google Scholar 

  10. Wang X.W., Yang G.J.: Hybrid economical telecloning of equatorial qubits and generation of multipartite entanglement. Phys. Rev. A 79, 062315-1–11 (2009)

    Google Scholar 

  11. Murao M., Vedral V.: Remote Information Concentration Using a Bound Entangled State. Phys. Rev. Lett. 86, 352–355 (2001)

    Article  ADS  Google Scholar 

  12. Wang X.W., Zhang D.Y., Yang G.J., Tang S.Q., Xie L.J.: Remote information concentration and multipartite entanglement in multilevel systems. Phys. Rev. A 84, 042310-1–80 (2011)

    Google Scholar 

  13. Bennett C.H., Wiesner S.J.: Communication via one- and two-particle operators on Einstein- Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Greenberger D.M., Horne M.A., Shimony A., Zeilinger A.: Bells theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  15. Gorbachev V.N., Zhiliba A.I., Trubilko A.I.: Teleportation of entangled states. J. Opt. B: Quantum Semiclassical Opt. 3, S25–S29 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  16. Bose S., Vedral V., Knight P.L.: Multiparticle generalization of entanglement swapping. Phys. Rev. A 57, 822–829 (1998)

    Article  ADS  Google Scholar 

  17. Wang X.W., Liu X., Wang Z.Y.: Dense coding with multi-atom entanglement channel in cavity QED. Chin. Phys. Lett. 24, 11–14 (2007)

    Article  ADS  Google Scholar 

  18. Ionicioiu R., Popescu A.E., Munro W.J., Spiller T.P.: Generalized parity measurements. Phys. Rev. A 78, 052326-1–800 (2008)

    Google Scholar 

  19. Braunstein S.L., Mann A.: Measurement of the Bell operator and quantum teleportation. Phys. Rev. A 51, R1727–R1730 (1995)

    Article  ADS  Google Scholar 

  20. Vaidman L., Yoran N.: Methods for reliable teleportation. Phys. Rev. A 59, 116–125 (1999)

    Article  ADS  Google Scholar 

  21. Lutkenhaus N., Calsamiglia J., Suominen K.A.: Bell measurements for teleportation. Phys. Rev. A 59, 3295–3300 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  22. Pan J.W., Zeilinger A.: Greenberger-Horne-Zeilinger-state analyzer. Phys. Rev. A 57, 2208–2211 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  23. Kim Y.H., Kulik S.P., Shih Y.: Quantum teleportation of a polarization state with a complete Bell state measurement. Phys. Rev. Lett. 86, 1370–1373 (2001)

    Article  ADS  Google Scholar 

  24. Qian J., Feng X.L., Gong S.Q.: Universal Greenberger-Horne-Zeilinger-state analyzer based on two-photon polarization parity detection. Phys. Rev. A 72, 052308-1–30 (2005)

    Google Scholar 

  25. Sheng Y.B., Deng F.G., Long G.L.: Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A 82, 032318-1–8 (2010)

    Google Scholar 

  26. Xia Y., Chen Q.Q., Song J., Song H.S.: Efficient hyperentangled Greenberger-Horne-Zeilinger states analysis with cross-Kerr nonlinearity. J. Opt. Soc. Am. B 29, 1029–1037 (2012)

    Article  ADS  Google Scholar 

  27. Li J., Shi B.S., Jiang Y.K., Fan X.F., Guo G.C.: A non-destructive discrimination scheme on 2n-partite GHZ bases. J. Phys. B: At. Mol. Opt. Phys. 33, 3215–3223 (2000)

    Article  ADS  Google Scholar 

  28. Barrett S.D., Kok P., Nemoto K., Beausoleil R.G., Munro W.J., Spiller T.P.: Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities. Phys. Rev. A 71, 060302-1–4(R) (2005)

    Google Scholar 

  29. Guo Q., Bai J., Cheng L.Y., Shao X.Q., Wang H.F., Zhang S.: Simplified optical quantum-information processing via weak cross-Kerr nonlinearities. Phys. Rev. A 83, 054303-1–4 (2011)

    Google Scholar 

  30. Knill E., Laflamme R., Milburn G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)

    Article  ADS  Google Scholar 

  31. Eisert J.: Optimizing linear optics quantum gates. Phys. Rev. Lett. 95, 040502-1–4 (2005)

    Google Scholar 

  32. Kok P., Munro W.J., Nemoto K., Ralph T.C., Dowling J.P., Milburn G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007)

    Article  ADS  Google Scholar 

  33. Uskov D.B., Kaplan L., Smith A.M., Huver S.D., Dowling J.P.: Maximal success probabilities of linear-optical quantum gates. Phys. Rev. A 79, 042326-1–4 (2009)

    Google Scholar 

  34. Hayes A.J.F., Haselgrove H.L., Gilchrist A., Ralph T.C.: Fault tolerance in parity-state linear optical quantum computing. Phys. Rev. A 82, 022323-1–9 (2010)

    Google Scholar 

  35. Imoto N., Haus H.A., Yamamoto Y.: Quantum nondemolition measurement of the photon number via the optical Kerr effect. Phys. Rev. A 32, 2287–2292 (1985)

    Article  ADS  Google Scholar 

  36. Nemoto K., Munro W.J.: Nearly deterministic linear optical controlled-NOT gate. Phys. Rev. Lett. 93, 250502-1–4 (2004)

    Google Scholar 

  37. Kok P.: Effects of self-phase modulation on weak nonlinear optical quantum gates. Phys. Rev. A 77, 013808-1–7 (2008)

    Google Scholar 

  38. Munro W.J., Nemoto K., Spiller T.P.: Weak nonlinearities: a new route to optical quantum computation. New J. Phys. 7, 137.1–12 (2005)

    Google Scholar 

  39. Jeong H.: Quantum computation using weak nonlinearities: Robustness against decoherence. Phys. Rev. A 73, 052320-1–6 (2006)

    Google Scholar 

  40. Lin Q., He B.: Single-photon logic gates using minimal resources. Phys. Rev. A 80, 042310-1–5 (2009)

    Google Scholar 

  41. Lin Q., He B., Bergou J.A., Ren Y.: Processing multiphoton states through operation on a single photon: methods and applications. Phys. Rev. A 80, 042311-1–14 (2009)

    Google Scholar 

  42. Lin Q., He B.: Efficient generation of universal two-dimensional cluster states with hybrid systems. Phys. Rev. A 82, 022331-1–7 (2010)

    Google Scholar 

  43. Lin Q., He B.: Weaving independently generated photons into an arbitrary graph state. Phys. Rev. A 84, 062312-1–6 (2011)

    Google Scholar 

  44. Wang X.W., Zhang D.Y., Tang S.Q., Xie L.J., Wang Z.Y., Kuang L.M.: Photonic two-qubit parity gate with tiny cross-Kerr nonlinearity. Phys. Rev. A 85, 052326-1–8 (2012)

    Google Scholar 

  45. Fleischhauer M., Imamoglu A., Marangos J.P.: Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005)

    Article  ADS  Google Scholar 

  46. Shiau B.W., Wu M.C., Lin C.C., Chen Y.C.: Low-light-level cross-phase modulation with double slow light pulses. Phys. Rev. Lett. 106, 193006-1–4 (2011)

    Google Scholar 

  47. Lo H.Y., Chen Y.C., Su P.C., Chen H.C., Chen J.X., Chen Y.C., Yu I.A., Chen Y.F.: Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels. Phys. Rev. A 83, 041804-1–4 (2011)

    Google Scholar 

  48. He B., Lin Q., Simon C.: Cross-Kerr nonlinearity between continuous-mode coherent states and single photons. Phys. Rev. A 83, 053826-1–8 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Wen Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, XW., Zhang, DY., Tang, SQ. et al. Nondestructive Greenberger-Horne-Zeilinger-state analyzer. Quantum Inf Process 12, 1065–1075 (2013). https://doi.org/10.1007/s11128-012-0453-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0453-0

Keywords

Navigation