Skip to main content
Log in

Perfect state transfer via quantum probability theory

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The transfer of quantum states plays an important role in quantum information processing. In fact, the transfer of a quantum state from point A to point B with unit fidelity has been the center of attention during the last decades. One of the ways to aim this goal is to transfer a quantum state in a spin chain described by designing a Hamiltonian in which a mirror symmetry with respect to the network center is created. In this paper, we introduce a method based on the spectral distribution of the adjacency matrix and stratifying a spin network, with respect to an arbitrary vertex denoted by o which is called starting vertex (reference vertex), to make perfect quantum state transfer possible between antipodes in the spin network. Then we design the coupling coefficients in a way to create a mirror symmetry in the Hamiltonian with respect to the center of the network. In this method the initial state is encoded on the starting vertex and then it is received at its antipode. There is no need to consider any external control in this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bouwmeester D., Ekert A., Zeilinger A.: The Physics of Quantum Information. Springer, Berlin (2000)

    MATH  Google Scholar 

  2. Bose S.: Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91, 207901 (2003)

    Article  ADS  Google Scholar 

  3. Christandl M., Datta N., Dorals T., Ekert A., Kay A., Landahl A.: Perfect transfer of arbitrary states in quantum spin networks. Phys. Rev. A 71, 032312 (2005)

    Article  ADS  Google Scholar 

  4. Chen J.-L., Wang Q.-L.: Perfect transfer of entangled states on spin chain. Int. J. Theor. Phys. 46, 641 (2007)

    ADS  Google Scholar 

  5. Yung M.-H.: Spin star as switch for quantum networks. J. Phys. B: At. Mol. Opt. Phys. 44, 135504 (2011)

    Article  ADS  Google Scholar 

  6. Zhang J.F., Long G.L., Zhang W., Deng Z., Liu W., Lu Z.: Simulation of Heisenberg XY interactions and realization of a perfect state transfer in spin chains using liquid nuclear magnetic resonance. Phys. Rev. A 72, 012331 (2005)

    Article  ADS  Google Scholar 

  7. Burgarth D., Bose S.: Conclusive and arbitrarily perfect quantum-state transfer using parallel spin-chain channels. Phys. Rev. A 71, 052315 (2005)

    Article  ADS  Google Scholar 

  8. Yung M.H., Bose S.: Perfect state transfer, effective gates, and entanglement generation in engineered bosonic and fermionic networks. Phys. Rev. A 71, 032310 (2005)

    Article  ADS  Google Scholar 

  9. Karbach P., Stolze J.: Spin chains as perfect quantum state mirrors. Phys. Rev. A 72, 030301(R) (2005)

    Article  MathSciNet  ADS  Google Scholar 

  10. Wojcik A. et al.: Unmodulated spin chains as universal quantum wires. Phys. Rev. A 72, 034303 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  11. Giovannetti V., Burgarth D.: Improved transfer of quantum information using a local memory. Phys. Rev. Lett. 96, 030501 (2006)

    Article  ADS  Google Scholar 

  12. Shi T., Li Y., Song Z., Sum C.P.: Quantum-state transfer via the ferromagnetic chain in a spatially modulated field. Phys. Rev. A 71, 032309 (2005)

    Article  ADS  Google Scholar 

  13. Li Y., Shi T., Chen B., Song Z., Sun C.P.: Quantum-state transmission via a spin ladder as a robust data bus. Phys. Rev. A 71, 022301 (2005)

    Article  ADS  Google Scholar 

  14. Yung S., Song Z., Sun C.P.: Quantum state swapping via a qubit network with Hubbard interactions. Phys. Rev. B 73, 195122 (2006)

    Article  ADS  Google Scholar 

  15. Paternostro M., Palma G.M., Kim M.S., Falci G.: Quantum-state transfer in imperfect artificial spin networks. Phys. Rev. A 71, 042311 (2005)

    Article  ADS  Google Scholar 

  16. Serafini A., paternostro M., Kim M.S., Bose S.: Enhanced dynamical entanglement transfer with multiple qubits. Phys. Rev. A 73, 022312 (2006)

    Article  ADS  Google Scholar 

  17. Nikolopoulos G.M., Petrosyan D., Lambropoulos P.: Electron wavepacket propagation and entanglement in a chain of coupled quantum dots. Europhys. Lett. 65, 297 (2004)

    Article  ADS  Google Scholar 

  18. Fitzsimons J., Twamley J.: Globally controlled quantum wires for perfect qubit transport, mirroring, and computing. Phys. Rev. Lett. 97, 090502 (2006)

    Article  ADS  Google Scholar 

  19. Avelllino M., Fisher A.J., Bose S.: Quantum communication in spin systems with long-range interactions. Phys. Rev. A 74, 012321 (2006)

    Article  ADS  Google Scholar 

  20. Bayat A., Karimipour V.: Thermal effects on quantum communication through spin chains. Phys. Rev. A 71, 042330 (2005)

    Article  ADS  Google Scholar 

  21. Chiara G.D., Rossini D., Montangero S., Fazio R.: From perfect to fractal transmission in spin chains. Phys. Rev. A 72, 012323 (2005)

    Article  ADS  Google Scholar 

  22. Greentree A.D., Devitt S.J., Hollenberg L.C.L.: Quantum-information transport to multiple receivers. Phys. Rev. A 73, 032319 (2006)

    Article  ADS  Google Scholar 

  23. Eisert J. et al.: Towards quantum entanglement in nanoelectromechanical devices. Phys. Rev. Lett. 93, 190402 (2004)

    Article  ADS  Google Scholar 

  24. Plenio M.B., Semiao F.L.: High efficiency transfer of quantum information and multi-particle entanglement generation in translation invariant quantum chains. New. J. Phys. 7, 73 (2005)

    Article  ADS  Google Scholar 

  25. Lyakhov A., Bruder C.: Quantum state transfer in arrays of flux qubits. New J. Phys. 7, 181 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  26. Haselgrove H.L.: Optimal state encoding for quantum walks and quantum communication over spin systems. Phys. Rev. A 72, 062326 (2005)

    Article  ADS  Google Scholar 

  27. Romito A. et al.: Solid-state quantum communication with Josephson arrays. Phys. Rev. B 71, 100501(R) (2005)

    Article  ADS  Google Scholar 

  28. Osborne T.J., Linden N.: Propagation of quantum information through a spin system. Phys. Rev. A 69, 52315 (2004)

    Article  ADS  Google Scholar 

  29. Boness T. et al.: Entanglement and dynamics of spin chains in periodically pulsed magnetic fields: accelerator modes. Phys. Rev. Lett. 96, 187201 (2006)

    Article  ADS  Google Scholar 

  30. Kay A.: Perfect state transfer: beyond nearest-neighbor couplings. Phys. Rev. A 73, 032306 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  31. Raussendorf R.: Quantum computation via translation-invariant operations on a chain of qubits. Phys. Rev. A 72, 052301 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  32. Jafarizadeh M.A., Sufiani R.: Perfect state transfer over distance-regular spin networks. Phys. Rev. A 77, 022315 (2008)

    Article  ADS  Google Scholar 

  33. Jafarizadeh M.A., Salimi S.: Investigation of continuous-time quantum walk via spectral distribution associated with adjacency matrix. Ann. Phys. 322, 1005–1033 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Obata N.: Quantum probabilistic approach to spectral analysis of star graphs. Interdiscip. Inf. Sci. 10, 41–52 (2004)

    MathSciNet  MATH  Google Scholar 

  35. Shohat J.A., Tamarkin J.D.: The Problem of Moments. American Mathematical Society, Providence, RI (1943)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Salimi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salimi, S., Ghoraishipour, S. & Sorouri, A. Perfect state transfer via quantum probability theory. Quantum Inf Process 12, 505–523 (2013). https://doi.org/10.1007/s11128-012-0392-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0392-9

Keywords

Navigation