Skip to main content
Log in

Quantum search algorithm for set operation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The operations of data set, such as intersection, union and complement, are the fundamental calculation in mathematics. It’s very significant that designing fast algorithm for set operation. In this paper, the quantum algorithm for calculating intersection set \({\text{C}=\text{A}\cap \text{B}}\) is presented. Its runtime is \({O\left( {\sqrt{\left| A \right|\times \left| B \right|\times \left|C \right|}}\right)}\) for case \({\left| C \right|\neq \phi}\) and \({O\left( {\sqrt{\left| A \right|\times \left| B \right|}}\right)}\) for case \({\left| C \right|=\phi}\) (i.e. C is empty set), while classical computation needs O (|A| × |B|) steps of computation in general, where |.| denotes the size of set. The presented algorithm is the combination of Grover’s algorithm, classical memory and classical iterative computation, and the combination method decrease the complexity of designing quantum algorithm. The method can be used to design other set operations as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tang S.-F.: Computer Organization and Architecture, 2nd edn. Higher Education Press, Beijing (2000)

    Google Scholar 

  2. Shor, P.W.: Algorithms for quantum computation discretelog and factoring. In: Proceedings of the 35th Annual Symposium on the Foundations of Computer Science, Los Alamitos, pp. 20–24 (1994)

  3. Vandersypen L.M.K., Steffen M., Breytal G., Yannonil C.S., Sherwood M.H., Chuang I.L.: Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonace, information and computation: classical and quantum aspects. Nature 414, 883–887 (2001)

    Article  ADS  Google Scholar 

  4. Lu C.-Y., Browne D.E., Yang T., Pan J.-W.: Demonstration of a compiled version of shor’s quantum factoring algorithm using photonic qubits. Phys. Rev. Lett. 99, 250504 (2007)

    Article  ADS  Google Scholar 

  5. Pang, C.-Y., Ding, C.-B., Hu, B.-Q.: Quantum pattern recongnition of classical signal (2007). arXiv: quant-ph/0707.0936

  6. Pang, C.Y.: Loading N-dimensional vector into quantum registers from classical memory with O (logN) Steps (2006). arXiv:quant-ph/0612061

  7. Latorre, J.I.: Imange compression and entanglement (2005). arXiv:quant-ph/0510031

  8. Pang, C.-Y.: Quantum image compression, Postdoctoral report, Key Laboratory of Quantum Information, Uni. of Science and Technology of China (CAS) Hefei, China (2006)

  9. Pang C.-Y., Zhou Z.-W., Guo G.-C.: A hybrid quantum encoding algorithm of vector quantization for image compression. Chin. Phys. 15, 3039–3043 (2006)

    Article  ADS  Google Scholar 

  10. Pang C.-Y., Zhou Z.-W., Chen P.-X., Guo G.-C.: Design of quantum vq iteration and quantum vq encoding algorithm taking sqrt(n) steps for data compression. Chin. phys. 15, 618–623 (2006)

    Article  ADS  Google Scholar 

  11. Pang, C.-Y., Hu, B.-Q.: Quantum discrete fourier tranform with classical output for signal processing (2007). arXiv:quant-ph/0706.2451

  12. Pang, C.-Y., Zhou, Z.-W., Guo, G.-C.: Quantum discrete cosine transform for image compression (2006). arxiv:quant-ph/0601043

  13. Nielsen M.A., Chuang I.L.: Quantum Computationand and Quantum Information, 1st edn. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  14. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum random access memory (2007). arXiv:quant-ph/0708.1879

  15. Grover, L.K.: Afast quantum mechanical algorithm for database search. In: Proceedings of the Twenty- Eighth Annual ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania, pp. 212–219 (1996)

  16. Boyer M., Brassard G., Hoyer P., Tap A.: Tight bounds on quantum searching. Fortsch. Phys. 46, 493–506 (1998)

    Article  ADS  Google Scholar 

  17. Durr, C., Hoyer, P.: A quantum algorithm for finding the minimun (1996). arXiv:quant-ph/9607014

  18. Long G.L.: Grover algorithm with zero theoretical failure rate. Phys. Rev. A 64, 022307 (2001)

    Article  ADS  Google Scholar 

  19. Biham E., Biham O., Biron D., Grassl M., Lidar D.A.: Grover’s quantum search algorithm for an arbitary initial amplitude distribution. Phys. Rev. A 60, 2742–2745 (1999)

    Article  ADS  Google Scholar 

  20. Biham E., Biham O., Biron D., Grassl M., Lidar D.A., Shapira D.: Analysis of generalized Grover quantum search algorithm using recursion equations. Phys. Rev. A 63, 012310 (2000)

    Article  ADS  Google Scholar 

  21. Parka S., Baeb J., Kwon Y.: Wavelet quantum search algorithm with partial information. J. Chaos Solitons Fractals 32(4), 1371–1374 (2007)

    Article  ADS  Google Scholar 

  22. Tulsi A.: Faster quantum-walk algorithm for the two-dimensional spatial search. J. Phys. Rev. A 78(1), 7–13 (2008)

    Article  Google Scholar 

  23. korepin V. E.: Quantum search algorithms. Int. J. Mod. Phys. B 23(31), 5727–5758 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Ambainis A.: Quantum search with variable times. J. Theory Comput. Syst. 47(3), 786–807 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhou R., Ding Q.: Quantum pattern recognition with probability of 100%. Int. J. Theor. Phys. 47(5), 1278–1285 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rigui Z., Jiang N., Ding Q.: Model and training of QNN with weight. Neural Process. Lett. 24(3), 261–269 (2006)

    Article  Google Scholar 

  27. Zhou R., Ding Q.: Quantum M-P neural network. Int. J. Theor. Phys. 46(12), 3209–3215 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhou R.: Quantum competitive neural network. Int. J. Theor. Phys. 49(1), 110–119 (2010)

    Article  MATH  Google Scholar 

  29. Younes, A.: Fixed phase quantum search algorithm. J. Quant-ph/0704.1585, 1–8

  30. Li P.C., Li S.Y.: Two improvements in Grover’s algorithm. Chin. J. Electron. 17(1), 100–104 (2008)

    Google Scholar 

  31. Li P.C., Li S.Y.: A Grover quantum searching algorithm based on the weighted targets. J. Syst. Eng. Electron. 19(2), 363–369 (2008)

    Article  MATH  Google Scholar 

  32. Rungta P.: The quadratic speedup in Grover’s search algorithm from the entanglement perspective. Phys. Lett. A 373(31), 2652–2659 (2009)

    Article  ADS  MATH  Google Scholar 

  33. Liang H., Dan L., GuiLu L.: An N/4 fixed-point duality quantum search algorithm. Sci. China Phys. Mech. Astron. 53(9), 1765–1768 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ri-Gui Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pang, CY., Zhou, RG., Ding, CB. et al. Quantum search algorithm for set operation. Quantum Inf Process 12, 481–492 (2013). https://doi.org/10.1007/s11128-012-0385-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0385-8

Keywords

Navigation