Skip to main content
Log in

Multiparty quantum secret sharing with the pure entangled two-photon states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present a secure multiparty quantum secret sharing scheme. The implementation of this scheme only needs to exploit the pure entangled two-photon pairs, the local unitary operations on single photons and the single-photon measurements with the computational basis, which make it more convenient in a practical application than others. In addition, each pure entangled two-photon pair can carry one bit of classical information and the intrinsic efficiency approaches 100%, since no classical bit needs to be transmitted except those for detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hillery M., Buzek V., Berthiaume A.: Quantum secret sharing. Phys. Rev. A 59(3), 18229–18234 (1999)

    Article  MathSciNet  Google Scholar 

  2. Xiao L., Long G.L., Deng F.G. et al.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69(5), 052307(1–5) (2004)

  3. Karlsson A., Koashi M., Imoto N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162–168 (1999)

    Article  ADS  Google Scholar 

  4. Cleve R., Gottesman D., Lo H.K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648–651 (1999)

    Article  ADS  Google Scholar 

  5. Gottesman D.: Theory of quantum secret sharing. Phys. Rev. A 61(4), 042311(1–8) (2000)

  6. Hideki, I., Jörn, M.Q., Anderson, C.A.N., et al.: A Quantum information theoretical model for quantum secret sharing schemes. 1–11 (2003) arXiv:quant-ph/ 0311136v1

  7. Sudhir K.S., Srikanth R.: Generalized quantum secret sharing. Phys. Rev. A 71(1), 012328 (1–6) (2005)

  8. Qin S.J., Gao F., Wen Q.Y., Zhu F.C.: Cryptanalysis of the Hillery-Buzek-Berthiaume quantum secret-sharing protocol. Phys. Rev. A 76(6), 062324(1–7) (2007)

  9. Tittel W., Zbinden H., Gisin N.: Experimental demonstration of quantum secret sharing. Phys. Rev. A 63(4), 042301(1–6) (2001)

  10. Lance A.M., Symul T., Bowen W.P. et al.: Tripartite quantum state sharing. Phys. Rev. Lett. 92(17), 177903(1–4) (2004)

  11. Zhang Z.J.: Multiparty quantum secret sharing of secure direct communication. Phys. Lett. A 34(1–2, 4), 60–66 (2005)

    Google Scholar 

  12. Zhang Z.J., Man Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72(2), 022303(1–4) (2005)

  13. Zhang Z.J., Li Y., Man Z.X.: Multiparty quantum secret sharing. Phys. Rev. A 71(4), 044301 (1–4) (2005)

  14. Deng F.G., Zhou H.Y., Long G.L.: Bidirectional quantum secret sharing and secret splitting with polarized single photons. Phys. Lett. A 337(4–6), 329–334 (2005)

    Article  MATH  ADS  Google Scholar 

  15. Deng F.G., Long G.L., Zhou H.Y.: An efficient quantum secret sharing scheme with Einstein-Podolsky-Rosen pairs. Phys. Lett. A. 340(1–4, 6), 43–50 (2005)

    Article  MATH  ADS  Google Scholar 

  16. Zhang Z.J.: Robust multiparty quantum secret key sharing over two collective-noise channels. Physica A 361(1), 233–238 (2006)

    Article  ADS  Google Scholar 

  17. Deng F.G., Li X.H., Li C.Y. et al.: Multiparty quantum secret splitting and quantum state sharing. Phys. Lett. A 354(3), 190–195 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Wang T.Y., Wen Q.Y., Chen X.B. et al.: An efficient and secure multiparty quantum secret sharing scheme based on single photons. Opt. Commun. 281(24), 6130–6134 (2008)

    Article  ADS  Google Scholar 

  19. Deng F.G., Li X.H., Zhou H.Y.: Efficient high-capacity quantum secret sharing with two-photon entanglement. Phys. Lett. A 372(12), 1957–1962 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Sun Y., Wen Q.Y., Gao F. et al.: Multiparty quantum secret sharing based on Bell measurement. Opt. Commun. 282(17), 3647–3651 (2009)

    Article  ADS  Google Scholar 

  21. Gao G.: Reexamining the security of the improved quantum secret sharing scheme. Opt. Commun. 282(22), 4464–4466 (2009)

    Article  ADS  Google Scholar 

  22. Lin S., Wen Q.Y., Qin S.J. et al.: Multiparty quantum secret sharing with collective eavesdropping-check. Opt. Commun. 282(22), 4455–4459 (2009)

    Article  ADS  Google Scholar 

  23. Jain S., Muralidharan S., Panigrahi P.K.: Secure quantum conversation through non-destructive discrimination of highly entangled multipartite states. Europhys. Lett. 87(6), 60008(1–6) (2009)

  24. Shi R.H., Huang L.S., Yang W., Zhong H.: Multiparty quantum secret sharing with Bell states and Bell measurements. Opt. Commun. 283(15), 2476–2480 (2010)

    Article  ADS  Google Scholar 

  25. Zhou P., Li X.H., Liang Y.J. et al.: Multiparty quantum secret sharing with pure entangled states and decoy photons. Physica A 381(15), 164–169 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  26. Deng F.G., Li C.Y., Li Y.S. et al.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72(2), 022338(1–8) (2005)

  27. Deng F.G., Li X.H., Li C.Y. et al.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs. Phys. Rev. A 72(4), 044301(1–4) (2005)

  28. Deng F.G., Li X.H., Li C.Y. et al.: Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements. Eur. Phys. J. D 39(3), 459–464 (2006)

    Article  ADS  Google Scholar 

  29. Muralidharan S., Panigrahi P.K.: Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77(3), 032321(1–7) (2008)

  30. Muralidharan S., Panigrahi P.K.: Quantum-information splitting using multipartite cluster states. Phys. Rev. A 78(6), 062333(1–5) (2008)

  31. Shi R.H., Huang L.S., Yang W., Zhong H.: Asymmetric multi-party quantum state sharing of an arbitrary m-qubit state. Quantum Inf. Process. 10(1), 53–61 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  32. Shi R.H., Huang L.S., Yang W., Zhong H.: Multi-party quantum state sharing of an arbitrary two-qubit state with Bell states. Quantum Inf. Process. 10(2), 231–239 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  33. Inoue K., Ohashi T., Kukita T. et al.: Differential-phase-shift quantum secret sharing. Opt. Express 16(20), 15469–15476 (2008)

    Article  ADS  Google Scholar 

  34. Boucher W., Debuisschert T.: Experimental implementation of time-coding quantum key distribution. Phys. Rev. A 72(6), 062325(1–9) (2005)

  35. Panthong, P., Chiangga, S., Sripimanwat, K., et al.: Experiment free space quantum key distribution, ICOCN 2005, pp. 159–162 (2005)

  36. Jeong, Y.C., Hong, K.Y., Kim, Y.S., Kim, Y.H.: Weak-pulse implementation of SARG04 quantum cryptography protocol in free space, CLEO/QELS 2008, pp. 1–2 (2008)

  37. Lütkenhaus N.: Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 61(5), 052304(1–10) (2000)

  38. Wan H.Q.: Controlled dense coding with a four-particle non-maximally entangled state. Int. J. Theor. Phys. 49(9), 2172–2179 (2010)

    Article  MATH  Google Scholar 

  39. Tian X.L., Xi X.Q.: A scheme for teleporting a general n-qubit state through nonmaximally entangled quantum channels. Mod. Phys. Lett. B 23(18), 2261–2267 (2009)

    Article  MATH  ADS  Google Scholar 

  40. Man Z.X., Xia Y.J., An N.B.: Quantum state sharing of an arbitrary multiqubit state using nonmaximally entangled GHZ states. Eur. Phys. J. D 42(2), 333–340 (2007)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Run-hua Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Rh., Zhong, H. Multiparty quantum secret sharing with the pure entangled two-photon states. Quantum Inf Process 11, 161–169 (2012). https://doi.org/10.1007/s11128-011-0239-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0239-9

Keywords

Navigation