Skip to main content
Log in

Quantum information processing through a genuine five-qubit entangled state in cavity QED

  • Original Paper
  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The utility of a five-qubit entangled state for quantum teleportation, quantum state sharing and superdense coding is investigated. The state can be utilized for perfect teleportation and quantum state sharing of an arbitrary single- and two-qubit state. The capacity of superdense coding of the state reaches the “Holevo bound”, which means that five classical bits can be transmitted by sending three qubits. The preparation of the five-qubit state and detection of the multipartite states in cavity QED are discussed. The distinct advantage of the feasible cavity QED technology that we use is insensitive to the thermal field and the cavity decay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hill S., Wootters W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)

    Article  CAS  ADS  Google Scholar 

  2. Wootters W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  CAS  ADS  Google Scholar 

  3. Vidal G., Werner R.F.: Computable measure of entanglement. Phys. Rev. A 65, 0323141–03231411 (2003)

    Google Scholar 

  4. Briegel H.J., Raussendorf R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910–913 (2001)

    Article  CAS  ADS  PubMed  Google Scholar 

  5. Raussendorf R., Briegel H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)

    Article  CAS  ADS  PubMed  Google Scholar 

  6. Yeo Y., Chua W.K.: Teleportation and dense coding with genuine multipartite entanglement. Phys. Rev. Lett. 96, 0605021–0605024 (2006)

    Article  Google Scholar 

  7. Brown I.D.K., Stepney S., Sudbery A., Braunstein S.L.: Searching for highly entangled multi-qubit states. J. Phys. A 38, 1119–1131 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Muralidharan S., Panigrahi P.K.: Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77, 0323211–0323217 (2008)

    Article  Google Scholar 

  9. Muralidharan, S., Panigrahi, P.K.: Perfect teleportation and superdense coding through an asymmetric five qubit statear. Xiv:0802.3464v1 (2008)

  10. Man Z.X., Xia Y.J., An N.B.: Genuine multiqubit entanglement and controlled teleportation. Phys. Rev. A 75, 0523061–0523065 (2007)

    Article  Google Scholar 

  11. Li L., Qiu D.: The states of W-class as shared resources for perfect teleportation and superdense coding. J. Phys. A 40, 10871–10885 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Rigolin G., de Oliveira T.R., de Oliveira M.C.: Operational classification and quantification of multipartite entangled states. Phys. Rev. A 74, 0223141–02231413 (2006)

    Article  Google Scholar 

  13. Bennett C.H., Brassard G., Crepeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MathSciNet  ADS  PubMed  MATH  Google Scholar 

  14. Bennett C.H., Wiesner S.J.: Communication via one- and two-particle operations on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  MathSciNet  ADS  PubMed  MATH  Google Scholar 

  15. Werner R.F.: All teleportation and dense coding schemes. J. Phys. A 34, 7081–7094 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Karlsson A., Bourennane M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394–4400 (1998)

    Article  CAS  MathSciNet  ADS  Google Scholar 

  17. Pati A.K.: Assisted cloning and orthogonal complementing of an unknown state. Phys. Rev. A 61, 0223081–0223084 (2000)

    Article  MathSciNet  Google Scholar 

  18. Agrawal P., Pati A.: Perfect teleportation and superdense coding with W states. Phys. Rev. A 74, 0623201–0623205 (2006)

    Article  Google Scholar 

  19. Peng   Z.H., Zou J., Liu X.J.: Scheme for implementing efficient quantum information processing with multiqubitW-class states in cavity QED. J. Phys. B 41, 0655051–0655057 (2008)

    Google Scholar 

  20. Hillery M., Buzek V., Berthiaume A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  CAS  MathSciNet  ADS  Google Scholar 

  21. Li Y.M., Zhang K.S., Peng K.C.: Multiparty secret sharing of quantum information based on entanglement swapping. Phys. Lett. A 324, 420–424 (2004)

    Article  CAS  MathSciNet  ADS  MATH  Google Scholar 

  22. Lance A.M., Symul T., Bowen W.P., Senders B.C., Tyc T., Ralon T.C., Lam P.K.: Continuous-variable quantum-state sharing via quantum disentanglement. Phys. Rev. A 71, 0338141–03381411 (2005)

    Article  Google Scholar 

  23. Rauschenbeutel A., Nogues G., Osnaghi S., Bertet P., Brune M., Raimond J.M., Haroche S.: Step-by-step engineered multiparticle entanglement. Science 288, 2024 (2000)

    Article  CAS  ADS  PubMed  Google Scholar 

  24. Raimond J.M. et al.: Colloquium: manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565–582 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  25. Riebe M. et al.: Deterministic quantum teleportation with atoms. Nature (London) 429, 734–737 (2004)

    Article  CAS  ADS  Google Scholar 

  26. Barrett M.D. et al.: Deterministic quantum teleportation of atomic qubits. Nature (London) 429, 737–738 (2000)

    Article  ADS  Google Scholar 

  27. Osnaghi S., Bertet P., Auffeves A., Maioli P., Brune M., Raimond J.M., Haroche S.: Coherent control of an atomic collision in a cavity. Phys. Rev. Lett. 87, 0379021–0379024 (2001)

    Article  Google Scholar 

  28. Zheng S.B.: Quantum-information processing and multiatom-entanglement engineering with a thermal cavity. Phys. Rev. A 66, 0603031–0603034 (2002)

    Google Scholar 

  29. Ye L., Guo G.C.: Scheme for implementing quantum dense coding in cavity QED. Phys. Rev. A 71, 0343041–0343043 (2005)

    Article  Google Scholar 

  30. Ye, L., Liu, Q.: Implement a measurement of GHZ entanglement for a multipartite system via cavity QED. Opt. Commun. (2008). doi:101016/j.optcom.2008.03.004

  31. Rigolin G.: Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement. Phys. Rev. A 71, 0323031–0323035 (2005)

    Article  Google Scholar 

  32. Deng F.G., Li X.H., Li C.Y., Zhou P., Zhou H.Y.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs. Phys. Rev. A 72, 0443011–0443014 (2005)

    Google Scholar 

  33. Bruss D., D’Ariano G.M., Lewenstein M., Macchiavello C., de Sen A.: Distributed quantum dense coding. Phys. Rev. A 93, 2105011–2105014 (2004)

    Google Scholar 

  34. Ye L., Yu L.B., Guo G.C.: Generation of entangled states in cavity QED. Phys. Rev. A 72, 0343041–0343044 (2005)

    Article  Google Scholar 

  35. Munhoz P.P. et al.: Spontaneous emission and teleportation in cavity QED. J. Phys. B: At. Mol. Opt. Phys. 38, 3875–3884 (2005)

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Qiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, L. Quantum information processing through a genuine five-qubit entangled state in cavity QED. Quantum Inf Process 9, 643–662 (2010). https://doi.org/10.1007/s11128-010-0164-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-010-0164-3

Keywords

Navigation