Skip to main content
Log in

Quantum Information Processing with Trapped Neutral Atoms

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum information can be processed using large ensembles of ultracold and trapped neutral atoms, building naturally on the techniques developed for high-precision spectroscopy and metrology. This article reviews some of the most important protocols for universal quantum logic with trapped neutrals, as well as the history and state-of-the-art of experimental work to implement these in the laboratory. Some general observations are made concerning the different strategies for qubit encoding, transport and interaction, including trade-offs between decoherence rates and the likelihood of two-qubit gate errors. These trade-offs must be addressed through further refinements of logic protocols and trapping technologies before one can undertake the design of a general-purpose neutral-atom quantum processor.

PACS: 03.67.Lx, 32.80.Pj, 34.50.-s

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. D. P. DiVincenzo, Fortschr. Phys. 48, 771 (2000).

    Google Scholar 

  2. E. Knill, R. Laflamme, and G. J. Milburn, Nature 409, 46 (2001).

    Google Scholar 

  3. M. A. Nielsen, Phys. Lett. A 308, 96 (2003).

    Google Scholar 

  4. R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188 (2001).

    Google Scholar 

  5. R. Blume-Kohout, C. M. Caves, and I. H. Deutsch, Found. Phys. 32, 1641 (2002).

    Google Scholar 

  6. Q. A. Turchette et al., Phys. Rev. Lett. 81, 3631 (1998).

    Google Scholar 

  7. D. Kielpinski, C. Monroe, and D. J. Wineland, Nature 417, 709 (2002).

    Google Scholar 

  8. Q. A. Turchette et al., Phys. Rev. A 61, 063418 (2000).

  9. G. K. Brennen et al., Phys. Rev. Lett. 82, 1060 (1999); G. K. Brennen, I. H. Deutsch, and C. J. Williams, Phys. Rev. A 65, 022313 (2002).

    Google Scholar 

  10. D. Jaksch et al., Phys. Rev. Lett. 82, 1975 (1999).

    Google Scholar 

  11. P. S. Jessen and I. H. Deutsch, Adv. At. Mol. Opt. Phys. 37, 95 (1996).

    Google Scholar 

  12. D. Jaksch et al., Phys. Rev. Lett. 85, 2208 (2000)

    Google Scholar 

  13. L. You and M. S. Chapman, Phys. Rev. A 62, 052302 (2000)

    Google Scholar 

  14. S. E. Hamann et al., Phys. Rev. Lett. 80, 4149 (1998).

    Google Scholar 

  15. M. Morinaga et al., Phys. Rev. Lett. 83, 4037 (1999); M. BenDahan et al., Phys. Rev. Lett. 76, 4508 (1996).

    Google Scholar 

  16. G. Klose, G. Smith, and P. S. Jessen, Phys. Rev. Lett. 86, 4721 (2001).

    Google Scholar 

  17. S. H. Myrskog, e-print quant-ph/0312210.

  18. D. Jaksch et al., Phys. Rev. Lett. 81, 3108 (2000).

    Google Scholar 

  19. M. Greiner et al., Nature (Lond.) 415, 39 (2002).

    Google Scholar 

  20. O. Mandel et al., Phys. Rev. Lett. 91, 010407 (2003).

  21. O. Mandel et al., Nature (Lond.) 425, 937 (2003).

    Google Scholar 

  22. S. Peil et al., Phys. Rev. A 67, 051603 (2003).

  23. R. Scheunemann et al., Phys. Rev. A 62, 051801 (2000).

  24. R. Folman et al., Adv. At. Mol. Opt. Phys. 48, 263 (2002).

    Google Scholar 

  25. N. Schlosser et al., Nature (Lond.) 411, 1024 (2001).

    Google Scholar 

  26. R. Dumke et al., Phys. Rev. Lett. 89, 097903 (2002).

  27. I. H. Deutsch, and P. S. Jessen, Phys. Rev. A 57, 1972 (1998).

    Google Scholar 

  28. E. Charron et al., Phys. Rev. Lett. 88, 077901 (2002).

  29. K. Eckert et al., Phys. Rev. A 66, 042317 (2002).

  30. M. T. Depue et al., Phys. Rev. Lett. 82, 2262 (1999); A. J. Kerman et al., Phys. Rev. Lett. 84, 439 (2000).

    Google Scholar 

  31. I. H. Deutsch, G. K. Brennen, and P. S. Jessen, Fortschr. Phys. 48, 925 (2000).

    Google Scholar 

  32. R. Stock, E. L. Bolda, and I. H. Deutsch, Phys. Rev. Lett. 91, 183201 (2003).

    Google Scholar 

  33. S. Inouye et al., Nature (Lond.) 392, 151 (1998); T. Weber et al., Science 299, 232 (2003); A. Widera et al., e-print cond-mat/0310719.

    Google Scholar 

  34. P. Treutlein et al., quant-ph/0311197.

  35. E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, J. Mat. Phys. 43, 4452 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jessen, P.S., deutsch, I.H. & Stock, R. Quantum Information Processing with Trapped Neutral Atoms. Quantum Information Processing 3, 91–103 (2004). https://doi.org/10.1007/s11128-004-9418-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-004-9418-2

Navigation