Skip to main content

Advertisement

Log in

Genetic architecture of photosynthesis energy partitioning as revealed by a genome-wide association approach

  • Original article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The photosynthesis process is determined by the intensity level and spectral quality of the light; therefore, leaves need to adapt to a changing environment. The incident energy absorbed can exceed the sink capability of the photosystems, and, in this context, photoinhibition may occur in both photosystem II (PSII) and photosystem I (PSI). Quantum yield parameters analyses reveal how the energy is managed. These parameters are genotype-dependent, and this genotypic variability is a good opportunity to apply mapping association strategies to identify genomic regions associated with photosynthesis energy partitioning. An experimental and mathematical approach is proposed for the determination of an index which estimates the energy per photon flux for each spectral bandwidth (Δλ) of the light incident (QI index). Based on the QI, the spectral quality of the plant growth, environmental lighting, and the actinic light of PAM were quantitatively very similar which allowed an accurate phenotyping strategy of a rice population. A total of 143 genomic single regions associated with at least one trait of chlorophyll fluorescence were identified. Moreover, chromosome 5 gathers most of these regions indicating the importance of this chromosome in the genetic regulation of the photochemistry process. Through a GWAS strategy, 32 genes of rice genome associated with the main parameters of the photochemistry process of photosynthesis in rice were identified. Association between light-harvesting complexes and the potential quantum yield of PSII, as well as the relationship between coding regions for PSI-linked proteins in energy distribution during the photochemical process of photosynthesis is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gastón Quero.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quero, G., Bonnecarrère, V., Simondi, S. et al. Genetic architecture of photosynthesis energy partitioning as revealed by a genome-wide association approach. Photosynth Res 150, 97–115 (2021). https://doi.org/10.1007/s11120-020-00721-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-020-00721-2

Keywords

Navigation