Skip to main content
Log in

Investigating the NAD-ME biochemical pathway within C4 grasses using transcript and amino acid variation in C4 photosynthetic genes

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Expanding knowledge of the C4 photosynthetic pathway can provide key information to aid biological improvements to crop photosynthesis and yield. While the C4 NADP-ME pathway is well characterised, there is increasing agricultural and bioengineering interest in the comparably understudied NAD-ME and PEPCK pathways. Within this study, a systematic identification of key differences across species has allowed us to investigate the evolution of C4-recruited genes in one C3 and eleven C4 grasses (Poaceae) spanning two independent origins of C4 photosynthesis. We present evidence for C4-specific paralogs of NAD-malic enzyme 2, MPC1 and MPC2 (mitochondrial pyruvate carriers) via increased transcript abundance and associated rates of evolution, implicating them as genes recruited to perform C4 photosynthesis within NAD-ME and PEPCK subtypes. We then investigate the localisation of AspAT across subtypes, using novel and published evidence to place AspAT3 in both the cytosol and peroxisome. Finally, these findings are integrated with transcript abundance of previously identified C4 genes to provide an updated model for C4 grass NAD-ME and PEPCK photosynthesis. This updated model allows us to develop on the current understanding of NAD-ME and PEPCK photosynthesis in grasses, bolstering our efforts to understand the evolutionary ‘path to C4’ and improve C4 photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aubry S, Brown NJ, Hibberd JM (2011) The role of proteins in C3 plants prior to their recruitment into the C4 pathway. J Exp Bot 62(9):3049–3059

    Article  CAS  Google Scholar 

  • Bellasio C, Griffiths H (2013) The operation of two decarboxylases (NADPME and PEPCK), transamination and partitioning of C4 metabolic processes between mesophylll and bundle sheath cells allows light capture to be balanced for the maize C4 pathway. Plant Physiol. https://doi.org/10.1104/pp.113.228221

    Article  PubMed  PubMed Central  Google Scholar 

  • Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, Estep M, Feng L, Vaughn JN, Grimwood J (2012) Reference genome sequence of the model plant Setaria. Nat Biotechnol 30(6):555–561

    Article  CAS  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120

    Article  CAS  Google Scholar 

  • Bräutigam A, Kajala K, Wullenweber J, Sommer M, Gagneul D, Weber KL, Carr KM, Gowik U, Maß J, Lercher MJ (2011) An mRNA blueprint for C4 photosynthesis derived from comparative transcriptomics of closely related C3 and C4 species. Plant Physiol 155(1):142–156

    Article  Google Scholar 

  • Bray NL, Pimentel H, Melsted P, Pachter L (2016) Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 34(5):525

    Article  CAS  Google Scholar 

  • Bressler R, Brendel K (1966) The role of carnitine and carnitine acyltransferase in biological acetylations and fatty acid synthesis. J Biol Chem 241(17):4092–4097

    CAS  PubMed  Google Scholar 

  • Bricker DK, Taylor EB, Schell JC, Orsak T, Boutron A, Chen Y-C, Cox JE, Cardon CM, Van Vranken JG, Dephoure N (2012) A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science 337(6090):96–100

    Article  CAS  Google Scholar 

  • Carnal N, Agostino A, Hatch M (1993) Photosynthesis in phosphoenolpyruvate carboxykinase-type C4 plants: mechanism and regulation of C4 acid decarboxylation in bundle sheath cells. Arch Biochem Biophys 306(2):360–367

    Article  CAS  Google Scholar 

  • Christin P-A, Petitpierre B, Salamin N, Büchi L, Besnard G (2009a) Evolution of C4 phosphoenolpyruvate carboxykinase in grasses, from genotype to phenotype. Mol Biol Evol 26(2):357–365

    Article  CAS  Google Scholar 

  • Christin P-A, Samaritani E, Petitpierre B, Salamin N, Besnard G (2009b) Evolutionary insights on C4 photosynthetic subtypes in grasses from genomics and phylogenetics. Genome Biol Evol 1:221–230

    Article  Google Scholar 

  • Christin P-A, Boxall SF, Gregory R, Edwards EJ, Hartwell J, Osborne CP (2013) Parallel recruitment of multiple genes into C4 photosynthesis. Genome Biol Evol 5(11):2174–2187

    Article  CAS  Google Scholar 

  • Ding Z, Weissmann S, Wang M, Du B, Huang L, Wang L, Tu X, Zhong S, Myers C, Brutnell TP (2015) Identification of photosynthesis-associated C4 candidate genes through comparative leaf gradient transcriptome in multiple lineages of C3 and C4 species. PLoS ONE 10(10):e0140629

    Article  Google Scholar 

  • Drincovich MaF, Casati P, Andreo CS (2001) NADP-malic enzyme from plants: a ubiquitous enzyme involved in different metabolic pathways. FEBS Lett 490(1–2):1–6

    Article  CAS  Google Scholar 

  • Edwards EJ, Osborne CP, Strömberg CA, Smith SA, Consortium CG (2010) The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328 (5978):587–591

    Article  CAS  Google Scholar 

  • Ehleringer JR, Cerling TE, Helliker BR (1997) C4 photosynthesis, atmospheric CO2, and climate. Oecologia 112(3):285–299

    Article  Google Scholar 

  • Emms DM, Kelly S (2015) OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 16(1):157

    Article  Google Scholar 

  • Emms DM, Covshoff S, Hibberd JM, Kelly S (2016) Independent and parallel evolution of new genes by gene duplication in two origins of C4 photosynthesis provides new insight into the mechanism of phloem loading in C4 species. Mol Biol Evol 33(7):1796–1806

    Article  CAS  Google Scholar 

  • Eubel H, Meyer EH, Taylor NL, Bussell JD, O’Toole N, Heazlewood JL, Castleden I, Small ID, Smith SM, Millar AH (2008) Novel proteins, putative membrane transporters, and an integrated metabolic network are revealed by quantitative proteomic analysis of Arabidopsis cell culture peroxisomes. Plant Physiol 148(4):1809–1829

    Article  CAS  Google Scholar 

  • Furbank RT (2011) Evolution of the C4 photosynthetic mechanism: are there really three C4 acid decarboxylation types? J Exp Bot 62(9):3103–3108

    Article  CAS  Google Scholar 

  • Furumoto T, Yamaguchi T, Ohshima-Ichie Y, Nakamura M, Tsuchida-Iwata Y, Shimamura M, Ohnishi J, Hata S, Gowik U, Westhoff P (2011) A plastidial sodium-dependent pyruvate transporter. Nature 476(7361):472

    Article  CAS  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40(D1):D1178–D1186

    Article  CAS  Google Scholar 

  • Greenfield P, Duesing K, Papanicolaou A, Bauer DC (2014) Blue: correcting sequencing errors using consensus and context. Bioinformatics 30(19):2723–2732

    Article  CAS  Google Scholar 

  • Haas BJ, Delcher AL, Mount SM, Wortman JR, Smith RK Jr, Hannick LI, Maiti R, Ronning CM, Rusch DB, Town CD (2003) Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res 31(19):5654–5666

    Article  CAS  Google Scholar 

  • Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8(8):1494–1512

    Article  CAS  Google Scholar 

  • Haferkamp I, Schmitz-Esser S (2012) The plant mitochondrial carrier family: functional and evolutionary aspects. Front Plant Sci 3:2

    Article  Google Scholar 

  • Hatch M, Kagawa T (1976) Photosynthetic activities of isolated bundle sheath cells in relation to differing mechanisms of C4 pathway photosynthesis. Arch Biochem Biophys 175(1):39–53

    Article  CAS  Google Scholar 

  • Hatch M, Mau S-L (1973) Activity, location, and role of asparate aminotransferase and alanine aminotransferase isoenzymes in leaves with C4 pathway photosynthesis. Arch Biochem Biophys 156(1):195–206

    Article  CAS  Google Scholar 

  • Hatch M, Kagawa T, Craig S (1975) Subdivision of C4-pathway species based on differing C4 acid decarboxylating systems and ultrastructural features. Funct Plant Biol 2(2):111–128

    CAS  Google Scholar 

  • Huang P, Studer AJ, Schnable JC, Kellogg EA, Brutnell TP (2016) Cross species selection scans identify components of C4 photosynthesis in the grasses. J Exp Bot 68(2):127–135

    Article  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8):754–755

    Article  CAS  Google Scholar 

  • Katoh K, Misawa K, Kuma KI, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast fourier transform. Nucleic Acids Res 30(14):3059–3066

    Article  CAS  Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649

    Article  Google Scholar 

  • Kerner J, Yohannes E, Lee K, Virmani A, Koverech A, Cavazza C, Chance MR, Hoppel C (2015) Acetyl-l-carnitine increases mitochondrial protein acetylation in the aged rat heart. Mech Ageing Dev 145:39–50

    Article  CAS  Google Scholar 

  • Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan R, Muller R, Dreher K, Alexander DL, Garcia-Hernandez M (2011) The Arabidopsis information resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 40(D1):D1202–D1210

    Article  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat methods 9(4):357–359

    Article  CAS  Google Scholar 

  • Leegood RC, Walker RP (1999) 4—regulation of the C4 pathway A2—sage. In: Rowan F, Monson RK (ed) C4 Plant Biology. Academic Press, San Diego, pp 89–131. https://doi.org/10.1016/B978-012614440-6/50005-7

    Chapter  Google Scholar 

  • Levy Karin E, Ashkenazy H, Wicke S, Pupko T, Mayrose I (2017a) TraitRateProp: a web server for the detection of trait-dependent evolutionary rate shifts in sequence sites. Nucleic Acids Res 45:W260–W264

    Google Scholar 

  • Levy Karin E, Wicke S, Pupko T, Mayrose I (2017b) An integrated model of phenotypic trait changes and site-specific sequence evolution. Syst Biol. 66:917–933

    Article  Google Scholar 

  • Linka N, Esser C (2012) Transport proteins regulate the flux of metabolites and cofactors across the membrane of plant peroxisomes. Front Plant Sci 3:3

    Article  Google Scholar 

  • Long JJ, Wang J-L, Berry JO (1994) Cloning and analysis of the C4 photosynthetic NAD-dependent malic enzyme of amaranth mitochondria. J Biol Chem 269(4):2827–2833

    CAS  PubMed  Google Scholar 

  • Long SP, ZHU XG, Naidu SL, Ort DR (2006) Can improvement in photosynthesis increase crop yields? Plant Cell Environ 29(3):315–330

    Article  CAS  Google Scholar 

  • Lu F, Lipka AE, Glaubitz J, Elshire R, Cherney JH, Casler MD, Buckler ES, Costich DE (2013) Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genet 9(1):e1003215

    Article  CAS  Google Scholar 

  • Ludwig M (2016) The roles of organic acids in C4 photosynthesis. Front Plant Sci 7:647

    Article  Google Scholar 

  • Maier A, Zell MB, Maurino VG (2011) Malate decarboxylases: evolution and roles of NAD (P)-ME isoforms in species performing C4 and C3 photosynthesis. J Exp Bot 62(9):3061–3069

    Article  CAS  Google Scholar 

  • Miesak BH, Coruzzi GM (2002) Molecular and physiological analysis of Arabidopsis mutants defective in cytosolic or chloroplastic aspartate aminotransferase. Plant Physiol 129(2):650–660

    Article  CAS  Google Scholar 

  • Moreno-Villena JJ, Dunning LT, Osborne CP, Christin P-A (2017) Highly expressed genes are preferentially co-opted for C4 photosynthesis. Mol Biol Evol 35(1):94–106

    Article  Google Scholar 

  • Muhaidat R, Sage RF, Dengler NG (2007) Diversity of Kranz anatomy and biochemistry in C4 eudicots. Am J Bot 94(3):362–381

    Article  CAS  Google Scholar 

  • Murata T, Ohsugi R, Matsuoka M, Nakamoto H (1989) Purification and characterization of NAD malic enzyme from leaves of Eleusine coracana and Panicum dichotomiflorum. Plant Physiol 89(1):316–324

    Article  CAS  Google Scholar 

  • Ohsugi R, Murata T (1980) Leaf anatomy, post-illumination CO2 burst and NAD-malic enzyme activity of Panicum dichotomiflorum. Plant Cell Physiol 21(7):1329–1333

    Article  CAS  Google Scholar 

  • Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek RL, Lee Y, Zheng L (2006) The TIGR rice genome annotation resource: improvements and new features. Nucleic Acids Res 35(suppl_1):D883–D887

    PubMed  PubMed Central  Google Scholar 

  • Palmieri F (2013) The mitochondrial transporter family SLC25: identification, properties and physiopathology. Mol Aspects Med 34(2):465–484

    Article  CAS  Google Scholar 

  • Palmieri L, Picault N, Arrigoni R, Besin E, Palmieri F, Hodges M (2008) Molecular identification of three Arabidopsis thaliana mitochondrial dicarboxylate carrier isoforms: organ distribution, bacterial expression, reconstitution into liposomes and functional characterization. Biochem J 410(3):621–629

    Article  CAS  Google Scholar 

  • Petit J-R, Jouzel J, Raynaud D, Barkov NI, Barnola J-M, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core. Antarct Nat 399(6735):429–436

    CAS  Google Scholar 

  • Picault N, Palmieri L, Pisano I, Hodges M, Palmieri F (2002) Identification of a novel transporter for dicarboxylates and tricarboxylates in plant mitochondria bacterial expression, reconstitution, functional characterization, and tissue distribution. J Biol Chem 277(27):24204–24211

    Article  CAS  Google Scholar 

  • Pick TR, Bräutigam A, Schlüter U, Denton AK, Colmsee C, Scholz U, Fahnenstich H, Pieruschka R, Rascher U, Sonnewald U (2011) Systems analysis of a maize leaf developmental gradient redefines the current C4 model and provides candidates for regulation. Plant Cell 12:4208–4220

    Google Scholar 

  • Pinto H, Sharwood RE, Tissue DT, Ghannoum O (2014) Photosynthesis of C3, C3–C4, and C4 grasses at glacial CO2. J Exp Bot 65(13):3669–3681

    Article  Google Scholar 

  • Price GD, Badger MR, Woodger FJ, Long BM (2008) Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. J Exp Bot 59(7):1441–1461

    Article  CAS  Google Scholar 

  • Rao X, Dixon RA (2016) The differences between NAD-ME and NADP-ME subtypes of C4 photosynthesis: more than decarboxylating enzymes. Front Plant Sci 7:1525

    Article  Google Scholar 

  • Rao X, Lu N, Li G, Nakashima J, Tang Y, Dixon RA (2016) Comparative cell-specific transcriptomics reveals differentiation of C4 photosynthesis pathways in switchgrass and other C4 lineages. J Exp Bot 67(6):1649–1662

    Article  CAS  Google Scholar 

  • Roberts A, Pachter L (2013) Streaming fragment assignment for real-time analysis of sequencing experiments. Nat Methods 10(1):71–73

    Article  CAS  Google Scholar 

  • Rodrigues TA, Alencastre IS, Francisco T, Brites P, Fransen M, Grou CP, Azevedo JE (2014) A PEX7-centered perspective on the peroxisomal targeting signal type 2-mediated protein import pathway. Mol Cell Biol 34(15):2917–2928

    Article  Google Scholar 

  • Rottensteiner H, Theodoulou FL (2006) The ins and outs of peroxisomes: co-ordination of membrane transport and peroxisomal metabolism. Biochimica et Biophysica Acta (BBA) 1763(12):1527–1540

    Article  CAS  Google Scholar 

  • Sage RF, Christin P-A, Edwards EJ (2011) The C4 plant lineages of planet earth. J Exp Bot 62(9):3155–3169

    Article  CAS  Google Scholar 

  • Schell JC, Olson KA, Jiang L, Hawkins AJ, Van Vranken JG, Xie J, Egnatchik RA, Earl EG, DeBerardinis RJ, Rutter J (2014) A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth. Mol Cell 56(3):400–413

    Article  CAS  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326(5956):1112–1115

    Article  CAS  Google Scholar 

  • Sharwood RE (2017) Engineering chloroplasts to improve Rubisco catalysis: prospects for translating improvements into food and fiber crops. New Phytol 213(2):494–510

    Article  CAS  Google Scholar 

  • Sharwood RE, Halpert M, Luro S, Schuster G, Stern DB (2011) Chloroplast RNase J compensates for inefficient transcription termination by removal of antisense RNA. Rna 17(12):2165–2176

    Article  CAS  Google Scholar 

  • Sharwood RE, Sonawane BV, Ghannoum O (2014) Photosynthetic flexibility in maize exposed to salinity and shade. J Exp Bot 65(13):3715–3724

    Article  Google Scholar 

  • Sharwood RE, Ghannoum O, Kapralov MV, Gunn LH, Whitney SM (2016a) Temperature responses of Rubisco from Paniceae grasses provide opportunities for improving C3 photosynthesis. Nat Plants 2:16186

    Article  CAS  Google Scholar 

  • Sharwood RE, Sonawane BV, Ghannoum O, Whitney SM (2016b) Improved analysis of C4 and C3 photosynthesis via refined in vitro assays of their carbon fixation biochemistry. J Exp Bot 67(10):3137–3148

    Article  CAS  Google Scholar 

  • Sommer M, Bräutigam A, Weber AP (2012) The dicotyledonous NAD malic enzyme C4 plant Cleome gynandra displays age-dependent plasticity of C4 decarboxylation biochemistry. Plant Biol 14(4):621–629

    Article  CAS  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313

    Article  CAS  Google Scholar 

  • Still CJ, Berry JA, Collatz GJ, DeFries RS (2003) Global distribution of C3 and C4 vegetation: carbon cycle implications. Glob Biogeochem Cycles 17 (1)

  • Taniguchi M, Kobe A, Kato M, Sugiyama T (1995) Aspartate aminotransferase isozymes in Panicum miliaceum L, an NAD-malic enzyme-type C4 plant: comparison of enzymatic-properties, primary structures, and expression patterns. Arch Biochem Biophys 318(2):295–306

    Article  CAS  Google Scholar 

  • Timón-Gómez A, Proft M, Pascual-Ahuir A (2013) Differential regulation of mitochondrial pyruvate carrier genes modulates respiratory capacity and stress tolerance in yeast. PLoS ONE 8(11):e79405

    Article  Google Scholar 

  • Tronconi MA, Fahnenstich H, Weehler MCG, Andreo CS, Flügge U-I, Drincovich MF, Maurino VG (2008) Arabidopsis NAD-malic enzyme functions as a homodimer and heterodimer and has a major impact on nocturnal metabolism. Plant Physiol 146(4):1540–1552

    Article  CAS  Google Scholar 

  • Voznesenskaya EV, Franceschi VR, Chuong SD, Edwards GE (2006) Functional characterization of phosphoenolpyruvate carboxykinase-type C4 leaf anatomy: immuno-, cytochemical and ultrastructural analyses. Ann Bot 98(1):77–91

    Article  CAS  Google Scholar 

  • Wang Y, Bräutigam A, Weber AP, Zhu X-G (2014) Three distinct biochemical subtypes of C4 photosynthesis? A modelling analysis. J Exp Bot 65(13):3567–3578

    Article  CAS  Google Scholar 

  • Washburn JD, Kothapalli SS, Brose JM, Covshoff S, Hibberd JM, Conant GC, Pires JC (2017) Ancestral reconstruction and C3 bundle sheath transcript abundance in the paniceae grasses indicate the foundations for all three biochemical C4 sub-types were likely present in the most recent ancestor. bioRxiv:162644

  • Weber AP, Bräutigam A (2013) The role of membrane transport in metabolic engineering of plant primary metabolism. Curr Opin Biotechnol 24(2):256–262

    Article  CAS  Google Scholar 

  • Weissmann S, Ma F, Furuyama K, Gierse J, Berg H, Shao Y, Taniguchi M, Allen DK, Brutnell TP (2016) Interactions of C4 subtype metabolic activities and transport in maize are revealed through the characterization of DCT2 mutants. Plant Cell Online 28(2):466–484

    Article  CAS  Google Scholar 

  • Wingler A, Walker RP, Chen Z-H, Leegood RC (1999) Phosphoenolpyruvate carboxykinase is involved in the decarboxylation of aspartate in the bundle sheath of maize. Plant Physiol 120(2):539–546

    Article  CAS  Google Scholar 

  • Woodward AW, Bartel B (2005) The Arabidopsis peroxisomal targeting signal type 2 receptor PEX7 is necessary for peroxisome function and dependent on PEX5. Mol Biol Cell 16(2):573–583

    Article  CAS  Google Scholar 

  • Xu B, Yang Z (2013) PAMLX: a graphical user interface for PAML. Mol Biol Evol 30(12):2723–2724

    Article  CAS  Google Scholar 

  • Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24(8):1586–1591

    Article  CAS  Google Scholar 

  • Yang Z, Wong WS, Nielsen R (2005) Bayes empirical Bayes inference of amino acid sites under positive selection. Molecular biology evolution 22(4):1107–1118

    Article  CAS  Google Scholar 

  • Zhang J, Nielsen R, Yang Z (2005) Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol 22(12):2472–2479

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Australian Government through the Australian Research Council Centre of Excellence for Translational photosynthesis under the following Grant: CE140100015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Watson-Lazowski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11120_2018_569_MOESM1_ESM.xlsx

Supplementary material 1. Supplementary 1—Transcript abundance of all genes investigated from additional replicates. Normalised transcript abundances (transcripts per million) for each gene investigated within this manuscript from additional replicates to confirm gene expression patterns. (XLSX 26 KB)

11120_2018_569_MOESM2_ESM.fasta

Supplementary material 2. Supplementary 2—Sequence alignments. All alignments used throughout manuscript as nucleotides. Nucleotide sequences were aligned via MAFFT translational alignments, using a 1.53 gap penalty and 0.123 offset value, with a G-INS-i algorithm and BLOSUM62 scoring matrix. (FASTA 193 KB)

11120_2018_569_MOESM3_ESM.docx

Supplementary material 3. Supplementary 3—Command used to create ultrametric tree. The commands run using the custom command block of MrBayes, within Geneious. (DOCX 13 KB)

11120_2018_569_MOESM4_ESM.docx

Supplementary material 4. Supplementary 4—List of gene ID’s. A list of the sequences referenced within this manuscript which come from species with published genomes, and which published ID’s they correspond to. (DOCX 16 KB)

11120_2018_569_MOESM5_ESM.jpg

Supplementary material 5. Supplementary 5—AspAT phylogenetic tree. Protein phylogenetic tree of all AspAT transcripts identified as well as known A. thaliana and Z. mays AspAT genes. Tree was built using protein alignments and RaxML (CAT BLOSUM62 model) with a bootstrap of 1000. Branch labels correspond to consensus branch support (%) and scale represents substitution rate. Tip labels correspond to the species used; PB - P. bisulcatum, PC – P. coloratum, PV – P. virgatum, PM – P. monticola, EF - E. frumentaceae, PA – P. antidotale, AX - A. fissifolius, SB – S. bicolor, CG – C. gayana, AP – A. pectinate, LF – L. fusca and LD – L. dubia. (JPG 2389 KB)

11120_2018_569_MOESM6_ESM.xlsx

Supplementary material 6. Supplementary 6—Transcript abundance of SLC25 transporters and C4 genes. Normalised transcript abundances (transcripts per million) for each gene investigated within the species investigated. (XLSX 26 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watson-Lazowski, A., Papanicolaou, A., Sharwood, R. et al. Investigating the NAD-ME biochemical pathway within C4 grasses using transcript and amino acid variation in C4 photosynthetic genes. Photosynth Res 138, 233–248 (2018). https://doi.org/10.1007/s11120-018-0569-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-018-0569-x

Keywords

Navigation